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Foreword

I would like to describe here in the preface the motives that led me to deal with entropy and
complexity, to understand them and finally to write this book. First of all, there is the shadowy
existence of complexity in physics, which has been spoiled by success for centuries, and by which
it is not perceived, which is to a good part due to one of the characteristics of complexity itself,
because it sets limits, but no hard ones. Thus, it does not impose itself, and the perception that
it exists and is accompanied by a limitation is therefore by no means compelling. The lack of
perception, however, is also due to the fact that entropy, which is a physical concept, is still not
understood in physics, although it was introduced as a concept and physical state quantity by
Clausius 170 years ago. On the other hand, its understanding is indispensable for the study of
large systems, since it is an unavoidable companion of every large system. Thus, it is a part of
reality and the study of it is a turn towards reality.

The essence of complexity is revealed much more clearly in economics. It was the place where
I started my first thoughts about complexity. To be concrete, after my studies in theoretical
physics, I was an employee of a company which, among many other things, was developing an
international personnel accounting system. Very soon, I asked myself the simple question of
why these systems actually have to be extremely complicated. The answer is just as simple. A
software program, and especially a payroll system, is developed with the goal of being able to
process many individual cases together. The essence of this set of individual cases is that they
all differ at least a little from each other with the consequence that the program must necessarily
reflect this diversity. And this is the simple essence of complex systems, namely their sheer size,
which is in each case a consequence of the multiplicity of somehow distinguishable parts of a
whole or parts between which a distinction must be drawn.

Another reason for writing this book is the importance of complexity for the conditions of human
existence. Here I perceive a parallelism with physics, since according to my observation there is
no sufficient awareness of the omnipresence of complexity in human existence, which also sets
limits here, so that not everything is feasible, and if it is, then with increased effort, which we call
work. We unconsciously perceive the complexity of a big city when we retreat to the silence of
a hotel room. The essence of this retreat is diminishment, for the room with its walls presents a
smaller world. Those who build a cabin in the wilderness do so for the same reason, to escape the
complexity of nature. More precisely, however, it is not only nature in general and its complexity,
but already that of the human body and subsequently that of its interaction with the outside.
Thus, the history of man is the attempt to reduce the complexity of his own being and to limit
his interaction with nature, i.e. simplify and control them.

Finally, the social and political context is dominated by complexity, which - here the dark side
of complexity reveals itself - pervades the unconscious like a monster and dictates thinking as
well as action. It is the breeding ground on which ideologies grow. There are two ways to reduce
complexity. One has already been mentioned. It consists of keeping the system small by limiting
it. The other is to avoid and reduce differences. Thus, every society is more or less uniformed,
by culture, customs and laws, in which by no means only, but essentially also sameness manifests
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itself. It suggests itself that societies which are free in principle increasingly fall into a schism
through this dualism. Here, one might say, wisdom is called for, more than ever. In this context,
justice in the sense of equality, however understood, is the place where opinions differ. The
problem now and the tragedy of justice is related to complexity, to order and disorder. For on
the one hand, justice is only possible in an orderly system, since in the disorder of anarchy the
unbridled right of the strongest applies, whereby inequality and, as a consequence, necessarily
injustice are established. At the same time, order is only possible through distinction and thus
inequality. Order is therefore on the one hand the precondition of justice and on the other hand
its counterpart. Here, too, it is to be hoped that an awareness of the contradiction to which
justice is subject will awaken. There is no perfect solution, only wisdom.

Overall, I hope to have made clear that complexity, order, and disorder are inherent features
of human existence and the universe. Ultimately, I wrote the book to raise awareness of the
ubiquity of complexity.



Chapter 1

Introduction

As already stated in the preface, in my opinion the meaning of entropy in physics is still not
understood today, although it was already introduced by Rudolf Clausius in 1854.1 First of all,
the anecdote of a conversation in 1939 between John von Neumann and Claude Shannon, which
is also reproduced in the said article of Wikipedia, gives reason for this:

My greatest concern was what to call it. I thought of calling it ‘information’, but
the word was overly used, so I decided to call it ‘uncertainty’. When I discussed it
with John von Neumann, he had a better idea. Von Neumann told me, ‘You should
call it entropy, for two reasons: In the first place your uncertainty function has been
used in statistical mechanics under that name, so it already has a name. In the second
place, and more important, nobody knows what entropy really is, so in a debate you
will always have the advantage.[6]

Here, let us just say that John von Neumann, being one of the most authoritative thinkers on
entropy at that time, used the formulation2

S = −kB
∑
i

pi log(pi) (1.1)

proposed by J. Williard Gibbs in the context of classical thermodynamics and transferred it over
to quantum mechanics. Now, on the one hand, this formulation is regarded as a generalization
of the Boltzmann entropy

S = −kB log(W ) (1.2)

as can be seen, for example, from the following two quotations:3 4

The microstates of such a thermodynamic system are not equally probable—for
example, high energy microstates are less probable than low energy microstates for
a thermodynamic system kept at a fixed temperature by allowing contact with a heat
bath. For thermodynamic systems where microstates of the system may not have equal
probabilities, the appropriate generalization, called the Gibbs entropy...[3]

1https://en.wikipedia.org/wiki/History_of_entropy
2https://en.wikipedia.org/wiki/Entropy_(statistical_thermodynamics)#Gibbs_entropy_formula
3https://en.wikipedia.org/wiki/Boltzmann’s_entropy_formula
4https://en.wikipedia.org/wiki/Entropy_(statistical_thermodynamics)
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8 CHAPTER 1. INTRODUCTION

Boltzmann’s entropy describes the system when all the accessible microstates are
equally likely. It is the configuration corresponding to the maximum of entropy at
equilibrium. The randomness or disorder is maximal, and so is the lack of distinction
(or information) of each microstate.[4]

On the other hand, the abstract of the June 2019 article Gibbs and Boltzmann Entropy in
Classical and Quantum Mechanics points to the opposite:5

The two approaches do not, however, necessarily agree for non-equilibrium sys-
tems. For those, we argue that the Boltzmann entropy is the one that corresponds to
thermodynamic entropy, in particular in connection with the second law of thermo-
dynamics.[1]

The conclusion of the same article:

The Gibbs entropy (1) is an efficient tool for computing entropy values in thermal
equilibrium when applied to the Gibbsian equilibrium ensembles ρ, but the fundamental
definition of entropy is the Boltzmann entropy (2).[1]

In this context, Boltzmann’s momentous thesis should be mentioned, according to which the W
in his formula 1.2 is equal to the number of states in the state space, which is shown by the
following quote entitled Boltzmann’s principle6:

Ludwig Boltzmann defined entropy as a measure of the number of possible mi-
croscopic states (microstates) of a system in thermodynamic equilibrium, consistent
with its macroscopic thermodynamic properties, which constitute the macrostate of
the system.[4]

According to the quotation, Boltzmann limited the principle to the state of thermodynamic equi-
librium. Nevertheless, it is considered valid also for arbitrary states. While the thermodynamic
equilibrium is linked in theory with the uniform distribution, the idea is that the general state
and thus also the thermodynamic disequilibrium are described by general distributions whose
relative frequencies arise by counting states. The counting is preceded by a state classification,
for instance by the energy of the system. The states within a class are counted, e.g. those with a
certain energy or within an energy interval [E,E + dE]. The entropy of the system is defined in
this conception then by the Gibbs entropy 1.1 of the counted relative frequencies, which expresses
the following quotation from Wikipedia to the Gibbs entropy formula:

The macroscopic state of a system is characterized by a distribution on the mi-
crostates. The entropy of this distribution is given by the Gibbs entropy formula,
named after J. Willard Gibbs. For a classical system (i.e., a collection of classical
particles) with a discrete set of microstates, if Ei is the energy of microstate i, and pi
is the probability that it occurs during the system’s fluctuations, then the entropy of
the system is . . .This definition remains meaningful even when the system is far away
from equilibrium. Other definitions assume that the system is in thermal equilibrium,
either as an isolated system, or as a system in exchange with its surroundings.[4]

Definition of counting principle: I would like to call this generalized principle described
above the counting principle. Its meaning is firstly the definition of entropy for a physical
system on the basis of counting and equations 1.1 or 1.2. Secondly, a product rule belongs to the
counting principle, according to which – in the logic of the Cartesian product7 – the number of
states of a total system decomposed into independent subsystems is equal to the product of the

5https://arxiv.org/pdf/1903.11870.pdf
6https://en.wikipedia.org/wiki/Entropy_(statistical_thermodynamics)#Boltzmann’s_principle
7https://en.wikipedia.org/wiki/Cartesian_product
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subsystem’s numbers of states. From the product rule in turn follows the additivity and thus the
extensivity of entropy for physically independent subsystems. For example, if two systems are
equally distributed and have state numbers W1 and W2, then it follows from their independence
and, in this case, from the validity of the product rule that the total system has W1 ·W2 states,
so that the entropy is additive because of log(W1) + log(W2) = log(W1 ·W2).8

Regardless of the counting principle, the passages quoted above show that even today, almost
170 years after the discovery of thermodynamic entropy, there are contradictory views on what is
to be understood by it. The counting principle, however, is the common basis of both views and
until today the pivot for the understanding of entropy, to which the development from classical
mechanics to quantum mechanics has an essential part, because in classical mechanics already the
classification of particle states in the continuum of the position space and the momentum space
is not possible or in the case of the discretization of the continuous space simply undetermined.
In quantum mechanics, however, the energy spectrum of a system is already discrete, so that at
least the classification is unambiguous.

According to what has been said, the counting principle together with the product rule is a
fundamental part of the entropy definition. In the following, however, I would like to present a
simple model for which the product rule with its meaning for the extensivity definitely has no
validity:

For the model, we restrict ourselves to particles in the spatial domain. More precisely, we consider
the states not of individual particles, but of particle collectives.9 Let the system be divided into
subsystems, i.e. into cells C1, C2, · · · of finite size in space, and let N particles be distributed
among the cells, and let them be indistinguishable, but not the cells. By being distributed among
the cells and thus assigned to them, the particles inherit the distinctness of the cells. Within
a cell we then have a collective of indistinguishable particles, while those of different cells are
distinguishable. For this model we now calculate the Boltzmann entropy for a system on the
basis of the counting principle in analogy to the calculation of the entropy of mixing10 and obtain
– except for the factor of the particle number N – formally the Gibbs entropy, as will be shown
shortly. To be concrete, let the distribution of particles among cells C1, C2, · · · be determined by
the frequencies n1, n2, · · · If all N particles are distinguishable, then there are N ! permutations of
the particles corresponding to N ! many distinguishable states. Instead, because the ni particles
within each Ci are indistinguishable, the total number of distinguishable states equals:

W =
N !

n1!, n2! · · ·

From this, if the frequencies ni are large, so that ni! ≈ nni
i holds, for the Boltzmann entropy

(with relative frequencies pi := ni/N) the following it true:

log(W ) = log

(
N !

n1!, n2! · · ·

)
≈ N log(N)−

∑
i

ni log(ni) = N
∑
i

ni
N

log(N)−N
∑
i

ni
N

log(ni)

= −N
∑
i

(ni
N

)
log
(ni
N

)
= −N

∑
i

pi log(pi)

In summary:

• The derivation follows from the classification of the particles implied by expansion in space
as well as from the Boltzmann formula and application of the counting principle to the
total number of states.

8Cf. section 3.5.2 on the issues of the counting principle
9Cf. section 4.2 on individuals and collectives

10https://en.wikipedia.org/wiki/Entropy_of_mixing#Proof_from_statistical_mechanics
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10 CHAPTER 1. INTRODUCTION

• The derivation does not follow from a classification of the states and counting per class.
Accordingly, the relative frequencies pi are not those of the states, but particle frequencies.

According to its construction, the described system can be decomposed into subsystems, the
cells Ci. Now the determination of the number of states within the cells is subject to the
same condition as that for the total system. And this condition is the distinguishability of the
particles, from which follows that each cell has the number of states 1, since there are also no
distinguishable states in it because of the indistinguishability of the particles. From this again
follows from the product rule of the counting principle that there is also in the whole system
only one state and the entropy of the whole system like that of each cell is equal to 0.

Against this new result, which contradicts the old −Npi log(pi), one may object that the inde-
pendence of the states of different cells cannot be clarified and thus the numbers of states cannot
simply be multiplied. However, this objection can be excluded, because possible dependencies at
best reduce the total number of states, but this again is not possible, because the product rule
comes to only one state of the total system anyway.

Another objection may be, according to which there is indeed only one total state, because the
interchange of particles e.g. by transposition does not change it. This is true for interchanges,
but not for particle displacements, by which e.g. from a uniform distribution distinctive uneven
distributions can arise, with which one gets at the same time into the contrast between the
expansion and the contraction of matter in space as well as in momentum space, which is one
of those laws, that define the meaning of entropy, i.e. the density entropy and the entropy of
motion respectively.

In a further summary we can state firstly that with the counting principle and counting of all
states from the Boltzmann entropy one can derive an expression which formally agrees with
the Gibbs entropy – except for the factor of the total number of particles. Second, it suggests
that the product rule of the counting principle for determining entropy from the entropies of
subsystems does not have general validity in the composition of parts into a whole, precisely in
that context in which it lends itself as an explanatory ground for the extensivity of entropy. As
will be shown, these problems are related to the fact that entropy essentially also reflects the
globalization effort11 which arises from the composition of parts to a whole and which can only
be assigned to the whole and not to the parts, while the counting principle, on the other hand,
assigns to each of the parts a quantity – the number of states – which all together supposedly
explain the entropy of the whole. Instead, it seems that the whole is more than the sum of its
parts. In connection with this, I would like to put forward the following theses:

Boltzmann Entropie: The Boltzmann entropy 1.2 is incomplete. If one derives from it the
entropy −N

∑
pi log(pi) including the total particle number N as above, it still lacks – in

respect to the property of extensivity – the complexity of the continuum.12

Gibbs Entropie und Zähl-Prinzip: Gibbs entropy is not extensive because the product rule
of the counting principle has only limited and, as will be shown, only fuzzy validity, while
at the same time the extensivity of Gibbs entropy can only be explained by the product
rule.13

Especially in section 7.6 Gibbs entropy (Shannon entropy) is compared with the later defined
density entropy or the U-entropy, which in contrast to the normal understanding of entropy is a
measure of disequilibrium and contraction, and it becomes clear that the finiteness of entropy is
related to the double reference of two continuous sets, the particle continuum on the one hand
and the space continuum on the other hand. It is equally clear that, in contrast, Gibbs entropy

11Cf. section 3.3.2
12Cf. section 3.4 on the complexity of spacial continuum
13Cf. section 3.5.2 on the issues of extensivity of Shannon entropy
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is self-referential and just the complexity of only one continuous set. The counting principle is
obviously subject to self-reference in the same way, because it basically counts the states of only
one set, namely those of the state space.

Newton’s actio = reactio is perhaps the most famous example of a double reference in physics,
where two bodies reference each other. Another example is the twin currents of the Schrödinger
equation, while the heat conduction equation and the diffusion equation of the isolated system are
both self-referential. Besides the already above mentioned double reference between particles and
physical space, then possibly another double reference is that between kinematics and dynamics in
such a way that the dynamics for each particle determines the evolution from which its probability
distribution emerges and thus also the collective particle density, which as a second continuum
is the one basis of the mutual reference between space and matter. This duality in turn forms
the basis for the finiteness of entropy, and it is at the same time the basis of the hierarchical, i.e.
the intensive order of space, which is reflected in the definition first of the rational paths, which
arise through the hierarchy as distinguished paths and then points of the continuous space and
thus, together with the irrational paths, make the space an address space, which conversely now
forms the basis for the dynamics of the particles in the form of the Schrödinger equation, in that
this equation refers to the addresses defined by the kinematics. With the kinematics it is about
nothing else than the bare description of state, while the dynamics define the how and why of
the change of state. Entropy belongs to kinematics.

Perhaps the most important implication of the considerations presented here is the discontinuity
of the density function of the particle density, which is even not only discontinuous, but probably
nowhere defined – with infinite values of the density for the rational and bounded but divergent
densities for the irrational paths, which together justifies the title of the book – the infinite
noise. On the other hand, it is integrable everywhere, since the mean values exist at all scales.
Thus, the mean is also another defining concept of the book, which is directly related to the two
concepts of expansion and contraction already mentioned. For any deviation of a distribution
from the distribution mean implies at the same time the existence of a contraction, while the
internal expansion in a system – of restricted extensive size – is complete when the distribution
coincides with the uniform distribution. In extensively unrestricted systems but with given finite
standard deviation, the – then exclusively – internal expansion reaches a maximum if the system
is normally distributed.

This is not the only reason why extensivity and intensivity form another outstanding pair of
concepts. Entropy is expected to be extensive. It is shown here that it is a physical quantity
with extensive and at the same time intensive characteristics, in that it reflects not only the
external but also the internal quantity of a system. In this sense, ordinary entropy is also an
expansion measure, increasing with both external and internal expansion. In contrast, the U-
entropy defined in chapter 7 is a contraction and order measure, which is the larger, the more
exposed parts of the system appear. In this way the order of the cosmic universe originates from
the galaxies and fixed stars which are excellent and exposed places of space.

Finally, however, the book is not exclusively about these concepts, for the understanding of which
only chapters 3, 6 and 7 are necessary, while the remaining chapters describe side paths in the
context of entropy.
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Chapter 2

The historical and further physical
context

2.1 Expansion and contraction in the Carnot cycle

The Carnot cycle1 was apparently the first major milestone on the way to the formulation of the
Second Law. In this thought experiment by Nicolas Léonard Sadi Carnot, a gas is transformed
from an initial state into other states one after the other in a process consisting of four sub-
processes, but to return to the initial state at the end, which is why the whole process is also
called a circular process. The focus of the process is the expansion and contraction of a gas,
especially the isothermal sub-processes, i.e. the expansion and contraction of the hot and cold
gas, respectively, at constant temperature, which is only possible under heat exchange with the
environment, a heat pool. In comparison, the other two are only auxiliary processes, again one
an expansion and the other a contraction process, but this time under isolation conditions, i.e.
excluding heat exchange with an environment. These two sub-processes are needed so that the
return to the initial state is possible and the whole process is actually a circular process, which
in turn allows the establishment of an energy balance with respect to the two isothermal sub-
processes, which is the actual goal of the circular process. More precisely, the four sub-processes
are described, for example, in Carnot cycle as follows:

sothermal expansion (with heat exchange): the initially hot gas with temperature TH and
volume V1 at pressure P1 is expanded to the larger volume V2 with lower pressure P2 by
using a heat pool, the environment of the gas, while the temperature is kept constant.

Isentropic expansion (without heat exchange): The gas is adiabatically reversibly expanded,
i.e. without using a heat sink and thus without heat exchange with an environment, further
to the volume V3 with pressure P3, cooling down to temperature TL.

Isothermal compression (with heat exchange): The gas is isothermally compressed to the
volume V4 at pressure P4 using a heat sink of temperature T2.

Das Gas wird unter Verwendung eines Wärmebeckens der Temperatur T2 isotherm auf das
Volumen V4 bei einem Druck P4 komprimiert.

Isentropic compression (without heat exchange): The gas is adiabatically reversibly com-
pressed further and thus heated until it returns to its initial state with state values V1, P1

and temperature TH .

1https://en.wikipedia.org/wiki/Carnot_cycle
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As already mentioned, the adiabatic sub-processes have a bridging function by bringing the gas
alternately to the two working temperatures TH and TL of the isothermal processes, within which
the work done mechanically on the gas P (+dV ) or by the Gas P (−dV ) also only has a bridging
function, since it is assumed that it only mediates the heat exchange between the gas and the
heat pool. I.e. it does not actually occur itself. Instead heat exchange takes place without time
delay. After all, the thus fictitiously assumed mechanical work performed by the gas or the heat
pool can be calculated and thus ultimately enables the energy balance mentioned above to be
drawn up.

The two adiabatic processes2 satisfy the following condition:

TV γ−1 = const. (2.1)

So also THV
(γ−1)
2 = TLV

(γ−1)
3 and TLV

(γ−1)
4 = THV

(γ−1)
1 and thus V2/V3 = V1/V4 bzw. V2/V1 =

V3/V4 and therefore:

log

(
V2
V1

)
= − log

(
V4
V3

)

The last equation, in turn, relates the two isothermal processes, each of which involves notional
work output and transfer of energy to the other system. In the case of isothermal expansion,
it must be the gas that absorbs energy, while the heat pool is the system doing the work. And
from the fiction of mechanical transfer, it follows that

∫ V2

V1
p dV is the quantity of work done that

is directly absorbed by the gas in the form of heat. Thus, if QH is this quantity of heat, the
following holds true:

QH =

∫ V2

V1

p dV

In isothermal compression, the gas loses energy analogously:

QL =

∫ V4

V3

p dV

In summary, for each of the two isothermal processes, the gas and the heat pool exchange heat
even though they have the same temperature. The exchange is mediated by the mechanical work
done in each case, which one system does and loses heat energy in the process, and which the
other system absorbs and converts directly into heat energy.

Finally, the ideal gas law applies to the gas:3

pV = nRT = nkBNAT (2.2)

Since in both isothermal processes the temperature remains constant, taking into account the
above equations, we get:

2https://en.wikipedia.org/wiki/Adiabatic_process
3https://en.wikipedia.org/wiki/Ideal_gas_law

https://en.wikipedia.org/wiki/Adiabatic_process
https://en.wikipedia.org/wiki/Ideal_gas_law
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QH

QL
=

∫ V2

V1
p dV∫ V4

V3
p dV

=
nRTH

∫ V2

V1

1
V dV

nRTL
∫ V4

V3

1
V dV

=
TH
TL

log

(
V2
V1

)
log

(
V4
V3

) = −TH
TL

All in all, this gives the condition for the four-part process to be closed, i.e. to return to the
initial state:

QH

TH
+
QL

TL
= 0 (2.3)

Now the expressions Q/T form the basis for the entropy definition according to Rudolf Clausius.
The absorption of the heat quantity QH from the environment at temperature TH is connected
with the entropy increase QH/TH , correspondingly the removal of QL at TL with the entropy
decrease QL/TL. In each case, the reverse is true for the environment, so that the complete
entropy balance is zero for both the gas and the environment. This is possible by the fiction of
reversible heat transfer between gas and environment avoiding a temperature difference between
both systems. Exactly this condition, heat exchange between two systems without a temperature
gradient between them, is not fulfilled in reality. On the contrary, here the heat flows from the
warm to the cold system. Not the sum of entropy increase of one system and entropy decrease of
the other system is equal to zero, but in general the sum of inflow and outflow of heat. Instead
of Eqn. 2.3, the entropy change ∆S of the total system consisting of both subsystems equals, if
TH > TL is valid and the heat flux δQ is small:

dS = δQ

(
1

TL
− 1

TH

)
(2.4)

The cold system records the heat input δQ > 0 at temperature TL and thus the entropy increase
δQ/TL, correspondingly the warm system records the entropy decrease −δQ/TH . The sum of
the entropy changes for the total system is greater than zero as long as the two temperatures are
different. However, equation 2.4 arbitrarily sets the sign for δQ from the perspective of the cold
system. A perspective-free symmetric formulation for two systems with arbitrary temperatures
T1 and T2 and energy fluxes δQ1 and δQ2 is

dS =

(
δQ1

T1
+
δQ2

T2

)
≥ 0 (2.5)

with the guarantee for the non-negativity of the sum by the auxiliary conditions of the two
theorems of thermodynamics, the first law of thermodynamics4, i.e. the conservation of energy

δQ1 + δQ2 = 0 (2.6)

and the second theorem:

sgn(δQ1) = sgn(T2 − T1) (2.7)
4https://en.wikipedia.org/wiki/First_law_of_thermodynamics

https://en.wikipedia.org/wiki/Rudolf Clausius
https://en.wikipedia.org/wiki/First_law_of_thermodynamics


16 CHAPTER 2. THE HISTORICAL AND FURTHER PHYSICAL CONTEXT

2.2 The Second Theorem

2.2.1 Infinitesimal locality of two-part systems

Exchange and net entropy

If one imagines a system, e.g. a solid, composed of many very small parts, then the definition
for the (heat related) entropy change of a closed system in the usual notation is

∆S =

∫
δQ

T
≥ 0 (2.8)

where first over the subsystems and then the time has to be integrated.5

At first sight, Eqn. 2.8 for the many-part system seems to be a direct generalization of Eqn.
2.5 for the two-part system, for which the isolation is implicitly assumed in Eqn. 2.5, because
only the two subsystems are considered. The general statement of monotonicity in Eqn. 2.8 for
the many-part system is mathematically not obvious and therefore only a postulate, while the
implicit isolation of the two-part system in connection with the two auxiliary conditions of the
theorems 2.6 and 2.7 enforces the inequality in 2.5 mathematically. More precisely, the following
holds for the (isolated) two-part system:

Under the condition of conservation of energy 2.6 (δQ1 + δQ2 = 0) the monotonicity of entropy
in 2.5 (dS = δQ1/T1+ δQ2/T2 ≥ 0) is equivalent to the second law according to 2.7 (sgn(δQ1) =
sgn(T2 − T1)), because the equivalence

dS = δQ1

(
1

T1
− 1

T2

)
= δQ1

(
T2 − T1
T1T2

)
≥ 0⇔ sgn(δQ1) = sgn(T2 − T1)

holds. I.e. also the two statements

1. Heat always flows from the hot to the cold system (Eqn. 2.7)

2. The entropy of a closed system does not decrease (Eqn. 2.5)

are equivalent for the two-part system. Now, both statements are different formulations of the
second law6, whose connection is mathematically revealed in a very simple way in the two-part
system. However, one can put forward the thesis that the connection for the two subsystems
and their compound is simple only under one essential condition, which consists in the fact that
in each of them the temperature is distributed uniformly in space. For temperature averages
T1 and T2, for example, Eqs. 2.5 und 2.7 do not hold in general, or the statements are true,
for example, only under the assumption of an indefinite time horizon. For arbitrary and thus
also arbitrarily short time horizons, however, spatially uniformly distributed temperatures are
required, which again can only be assumed in general for spatially arbitrarily small systems. In
this respect, the second law in the formulation (1) is afflicted with fuzziness, which can only be
avoided by arbitrarily large periods of time or arbitrarily small systems.

The formulation (2), however, is assumed to hold, first, with certainty, second, for all – especially
short time – periods, and third, for spatially extended systems, and finally, the magnitude of its
increase is subject to the inequality 2.8.

According to what has been said, (1) is the differential formulation of the second law in the limit
of arbitrarily small systems and (2) is the integral for extended systems. In that case the integral

5Cf. https://en.wikipedia.org/wiki/Disgregation
6https://en.wikipedia.org/wiki/Second_law_of_thermodynamics

https://en.wikipedia.org/wiki/Second_law_of_thermodynamics
https://en.wikipedia.org/wiki/Second_law_of_thermodynamics
https://en.wikipedia.org/wiki/Disgregation


2.2. THE SECOND THEOREM 17

in Eqn. 2.8 must be equal to the integral over the differential relations 2.7, which will be shown
in the following:

For this purpose, the two-part system with equations 2.5, 2.6 and 2.7 is considered as the basis
of the differential relationship between two neighboring subsystems of the many-part system.
The physical assumption here is that the interaction of the two subsystems – resulting in heat
exchange – takes place at their interface (or at least through their interface or defined with
respect to it). Eqn. 2.5 is thus given a second interpretation. In the previous interpretation, the
heat flux δQ1 in 2.6 has a reference to the first subsystem and only to it, and correspondingly
δQ2 to the second subsystem, just as δQ in 2.8 has a reference to exactly one subsystem with
the meaning of the net heat flux into or out of that subsystem resulting from the interactions
of the subsystem with all its neighbors, so that δQ in 2.8 is the sum e.g. of six such boundary
heat fluxes if one visualizes, say, the subsystems as cubes, each of which is then separated from
its neighbors by exactly six interfaces. In the second interpretation, there is only one boundary
heat flux (hereafter δq) for the two-part system, which is to be distinguished from the net heat
fluxes (hereafter δQ) and has a reference only to the two-part system. Instead of the equations
2.5, 2.6 and 2.7, then the following holds:

dS = δq

(
1

T1
− 1

T2

)
≥ 0 (2.9)

sgn(δq) = sgn(T2 − T1) (2.10)

With this interpretation, the distinction of the two subsystems fades away, since the equations
together are invariant to the interchange of the subsystems. This becomes clearer, if from 2.9
and 2.10

dS = |δq| |T2 − T1|
T1T2

≥ 0 (2.11)

is derived, which expresses the complete symmetry of the two subsystems with respect to their
total entropy increase. This in turn has the further consequence that the entropy increase
of the two-part system is independent of its relation to the many-part system in which it is
embedded, whereby the entropy within the many-part system is additive. If, however, as a third
consequence, the entropy increase of a whole system is the cumulative result of the inner relations
of its two-part subsystems, then there is an entropy in principle only for extensively unbounded
systems, since the two-part relation founded by neighborhood – analogous to the neighborhood
or successor relation n→ n+1 of the natural numbers – implies unbounded expansion. Thus, at
this point, one can already recognize the meaning of the isolation of the physical system for the
entropy, since the isolation, by preventing the heat exchange on a finite system periphery, sets
a limit to the expansion of the physical connection, which is in itself unlimited, and thus makes
the summation of the two-part entropy increases 2.11 on a limited (closed) area meaningful at
all.

The thus monotonic entropy change dS of the two-part system according to 2.9 or 2.11 shall be
called exchange entropy in the following while the entropy change corresponding to the net heat
flux of each of the subsystems of the two-part system shall be called net entropy :

Exchange entropy: The non-negative exchange entropy is the entropy change according to
equation 2.11 of a total system consisting of two parts. It is by definition non-negative in
accordance with the first law and the second law according to (1). I.e., the exchange entropy
is an expression of the universal validity of the two laws. It is additive with the consequence

https://en.wikipedia.org/wiki/First_law_of_thermodynamics
https://en.wikipedia.org/wiki/Second_law_of_thermodynamics
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of extensive unboundedness of the physical system or of an induced boundedness, which
we call isolation.

Net entropy: The net entropy (change) is the entropy change of a subsystem due to the inter-
action with all its neighboring subsystems. It is the sum of the exchange entropies, each
resulting from the boundary heat fluxes between the subsystem and its neighbors. Unlike
the exchange entropy, it can also be negative. It can be directly generalized to many-part
systems, as done in Eqn. 2.8, i.e. the entropy change of a many-part system is understood
as the sum of the net entropies of its subsystems.

Further, we shall now show that for isolated systems the sum of the exchange entropies coincides
with the sum of the net entropies, so that since the exchange entropies are non-negative without
exception, the total entropy

∫
δQ/T cannot decrease either.

Decisive for this global relation between the exchange entropies and the net entropies is the
identity of the sums of two series which are rearrangements from one another. Let the numbers
a0, a1, . . . an und b0, b1, . . . bn, bn+1 with the boundary condition

a0b0 = anbn+1 (2.12)

be given. Because of

n∑
i=0

ai(bi − bi+1) =
n∑

i=0

aibi −
n+1∑
i=1

ai−1bi = a0b0 +
n∑

i=1

(ai − ai−1)bi − anbn+1 (2.13)

then applies:

n∑
i=0

ai(bi − bi+1) =
n∑

i=1

(ai − ai−1)bi (2.14)

Thus, the generally valid equality in 2.14 is equivalent to the equality in 2.12.

Now let further be given a rod which is decomposed into n cells C1, . . . Cn with temperatures
T1, . . . Tn, internal boundary heat fluxes δqi between two neighboring cells Ci and Ci+1 for 1 ≤
i ≤ n− 1 and the net heat fluxes:

δQi = δqi − δqi−1 (2.15)

Let the boundary heat fluxes at the rod ends C1 und Cn with the surroundings of the rod be δq0
and δqn, respectively. All together the following table shows

C0 C1 C2 ... Cn Cn+1

T0 T1 T2 ... Tn Tn+1

δq0 → δq1 → δq2 → ... δqn →
→ δQ1 ← → δQ2 ← ... → δQn ←

Table 2.1: Heat flow in the rod

where the additional cells C0 and Cn+1 represent the environment at the front and rear ends
of the rod, respectively. For these two cells, the net heat fluxes δQ0 and δQn+1, respectively,
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are missing from the figure because we are interested in the net heat fluxes only within the rod.
Similarly, the boundary heat flux δqn+1 is missing because it is not directly related to the rod.
From Eqn. 2.14 with constraint 2.12, it follows with ai = δqi und bi = 1/Ti

n∑
i=1

δqi

(
1

Ti
− 1

Ti+1

)
=

n∑
i=1

(δqi − δqi−1)
1

Ti
(2.16)

together with the transferred boundary condition:

δq0T0 = δqnTn+1 (2.17)

The symmetry and positivity of the exchange entropy, expressed primarily in Eqn. 2.11, allows
the boundary heat fluxes δqi to be given an arbitrary (but consistent) direction (indicated in
Table 2.1 above by the direction of the arrows in line with the progression of the index i and
thus consistent with the traversal sense of the spatial order). From Eqn. 2.9 follows:

sgn(δqi) = sgn(Ti+1 − Ti) (2.18)

The satisfaction of constraint2.17 can now be related to the isolation of the system as follows:

Open rod: rod with open ends for which there is no heat exchange at either end with its
surroundings, and for which therefore δq0 = δqn = 0 is true.

Closed rod: Closed rod, e.g. a ring. For this, the three cells C0, Cn and Cn+1 are identical, so
that T0 = Tn = Tn+1 and δq0 = δqn, and hence 2.17 also holds.

Thus, in both cases, equation 2.16 is satisfied and, by premise, its left-hand side consists of the
non-negative exchange entropies only, so that from 2.16 together with Eqn. 2.8 and 2.15

0 ≤
n∑

i=1

δqi

(
1

Ti
− 1

Ti+1

)
=

n∑
i=1

(δqi − δqi−1)
1

Ti
=

n∑
i=1

δQi

Ti
= ∆S (2.19)

follows. Furthermore, due to

n∑
i=1

δQi =

n∑
i=1

(δqi − δqi−1) = δqn − δq0 = 0 (2.20)

the first law ist satisfied, if also the boundary condition δq0 = δqn is satisfied.

Equation 2.15 is nothing else than the continuity equation7 for the heat energy, i.e. the local
version of the law of conservation of energy. As one can see clearly, the conservation of energy
of the whole system does not follow in general, but – here – only under the additional condition
δq0 = δqn. This is clear, because the global conservation of energy can follow from the local
conservation only if the local conservation has global validity in the system. For systems, whose
spatial extension is limited, and which have therefore a periphery, this plays therefore the crucial
role for the global conservation of energy. In this context, the isolation of the system means that
the local conservation of energy also applies to the peripheral cells.

7https://en.wikipedia.org/wiki/Continuity_equation#Energy_and_heat

https://en.wikipedia.org/wiki/First_law_of_thermodynamics
https://en.wikipedia.org/wiki/Continuity_equation#Energy_and_heat
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Fourier’s law and its consequences

One can now go one step further and develop the second law in the form of Equations 2.9 und
2.10 with the help of Fourier’s law8, since the law establishes a relationship between the boundary
heat flux and the temperature or the temperature gradient. It should be taken into account that
Fourier’s law describes a heat flux in the direction of decreasing temperature, but the sign of δqi
is defined inversely according to Eqn. 2.18, namely the positive heat inflow into cell i when cell
i+ 1 has a higher temperature, so that in the limit dx→ 0 with the thermal conductivity k

δqi = −− k∆y∆z
∆T

∆x
∆t = k

Ti+1 − Ti
∆x

∆y∆z∆t −→ k
∂T

∂x
∆y∆z∆t (2.21)

applies. It follows from this:

Size of the exchange entropy: Because in the limit dx→ 0 also

1

Ti
− 1

Ti+1
=
Ti+1 − Ti
TiTi+1

=
∆x

TiTi+1

∆T

∆x
−→ 1

T 2

∂T

∂x
dx

holds, together with Eqn. 2.21 for the exchange entropies in Eqn. 2.19 is obtained:

δqi

(
1

Ti
− 1

Ti+1

)
−→ k

(
∂T

∂x

)2

T 2
dx∆y∆z∆t

Now this is the exchange entropy of cell i due to the rearward boundary heat flux between it and
cell i + 1. In an extension to three dimensions, the rearward exchange entropies in y-direction
and in z-direction are to be considered analogously. Namely, if the system is decomposed into
cubes of equal size along the coordinate axes within the framework of a Cartesian coordinate
system, then this decomposition also specifies decompositions into square rods in each of the
x-direction, y-direction and z-direction. For each such bar, relations as in 2.19 then hold, and
each cube ijk is the intersection of three bars. For the sum

exijk := δqijk,x

(
1

Tijk
− 1

T(i+1)jk

)
+ δqijk,y

(
1

Tijk
− 1

Ti(j+1)k

)
+ δqijk,z

(
1

Tijk
− 1

Tij(k+1)

)

of the three rearward exchange entropies of the cube holds if the side lengths of the cube converge
to zero, with dV := dx · dy · dz:

exijk −→ ex(r) dV = k
1

T 2

((
∂T

∂x

)2

+

(
∂T

∂y

)2

+

(
∂T

∂z

)2
)
dV∆t

or short:

ex(r) dV = k

(
∇T
T

)2

dV∆t (2.22)

8https://en.wikipedia.org/wiki/Thermal_conduction#Fourier’s_law

https://en.wikipedia.org/wiki/Thermal_conduction#Fourier's_law
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Magnitude of net heat flux: For the net heat flux δQi = δqi − δqi−1 of a bar according to
2.15, we obtain from Eqn. 2.21:

δQi −→ k

∂T (x)

∂x
− ∂T (x− dx)

∂x
dx

dx∆y∆z∆t = k
∂2T

∂x2
dx∆y∆z∆t

For the three-dimensional extension

δQijk := (δqijk,x − δq(i−1)jk,x) + (δqijk,y − δqi(j−1)k,y) + (δqijk,z − δqij(k−1),z) (2.23)

follows accordingly:

δQ(r)dV = k

(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)
dV∆t = k ·∆T · dV ·∆t (2.24)

Size of the net entropy: For the net entropy according to Eqn. 2.19, i.e.

netijk :=
δQijk

Tijk

follows from 2.24 in the limit of infinitesimal cell size ∆x∆y∆z −→ dV :

net(r) dV = k
∆T

T
· dV ·∆t (2.25)

Isolated systems

The results in Equations 2.22 and 2.25 for the exchange and net entropies, respectively, follow
solely from Fourier’s law in Eqn. 2.21, which concretizes the second law by relating the boundary
heat flux δqi to the temperature gradient ∂T/∂x.

The energy conservation law 2.20 of the isolated one-dimensional system can be extended to
three-dimensional systems in a simple way by identifying isolation with extensive finiteness, so
that there is no heat exchange with the environment on the whole system periphery, which is
also the case if the perpendicular component of the temperature gradient T on the periphery
disappears everywhere. For this case Eqn. 2.16 is valid and correspondingly also the three-
dimensional expansion

0 ≤
∑
ijk

exijk =
∑
ijk

netijk = ∆S

and therefore according to equations 2.22 and 2.25 also

0 ≤ ∆t

∫
k

(
∇T
T

)2

dV = ∆t

∫
k
∆T

T
dV =

∫
δQ

T
= ∆S

and finally:

dS

dt
=

∫
k
∆T

T
dV =

∫
k

(
∇T
T

)2

dV ≥ 0 (2.26)

https://en.wikipedia.org/wiki/Thermal_conduction#Fourier's_law
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For the open bar9 with length L, if k is independent of location, the equation from 2.26 becomes:

dS

dt
=

∫ L

0

T
′′

T
dx = k

∫ L

0

(
T

′

T

)2

dx ≥ 0 (2.27)

With the boundary condition δq0 = δqn = 0 applying to the open rod, from which follows
T

′
(0) = T

′
(L) = 0, the equality of the two integrals above also follows directly from the product

rule:

∫ L

0

T
′′

T
dx =

T
′
(L)

T (L)
− T

′
(0)

T (0)
−
∫ L

0
T

′
(
− 1

T 2
T

′
)
dx =

T
′
(L)

T (L)
− T

′
(0)

T (0)
+

∫ L

0

(
T

′

T

)2

dx (2.28)

For the closed rod10 Eqn. 2.27 also holds, but with boundary conditions T (0) = T (L) und
T

′
(0) = T

′
(L), from which the equality of the integrals in 2.27, as for the open rod, also follows

directly from the product rule, as is clear from Eqn. 2.28.

For the bar, one can also derive the time monotonicity of the entropy more generally than by its
complete isolation from Eqn. 2.28 if

T
′
(L)

T (L)
− T

′
(0)

T (0)
≥ 0

holds, because then instead of 2.27 even

dS

dt
=

∫ L

0

T
′′

T
dx ≥ k

∫ L

0

(
T

′

T

)2

dx ≥ 0 (2.29)

follows. A simple concrete case is the heat flow with heat inflow at the back end and heat
outflow of the same magnitude at the front end, for which T

′
(0) = T

′
(L) > 0 thus holds, but

which encounters an opposite global temperature drop T (0) ≥ T (L).

Now it is interesting in all three cases that because of the boundary conditions the integral
over the relative temperature curvature T ′′

/T is guaranteed to be non-negative, although the
curvature can also be negative regionally, since the boundary conditions do not directly prede-
termine the temperature profile in the interior of the interval. However, the boundary condition
T

′
(0) = T

′
(L), which is present in all three cases, first forces the integral over the absolute

curvature T ′′

∫ L

0
T

′′
dx = T

′
(L)− T ′

(0) = 0

and thus the mean value over all curvatures vanishes. It must therefore be assumed that the
relative curvature magnitudes |T ′′

/T | tend to be small in right-curved (concave) regions with
T

′′ ≤ 0 and thus the temperatures tend to be high and, conversely, large in left-curved (convex)
regions with correspondingly low temperatures. This is obviously true for well-known functions
such as the sine between −π/2 and +π/2 or between π/2 and between 3π/2. In general, maxima

9Cf. the definition of the open rod in section 2.2.1
10Cf. the definition of the closed rod in section 2.2.1
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are indeed surrounded by right-hand curvatures and minima by left-hand curvatures, confirming
the conjecture expressed above. In summary, the boundary conditions and thus the isolation of
the system therefore do not determine the course of the temperature inside the system, but they
do have a decisive and, above all, global influence. If a system is isolated ad hoc, the temperature
distribution must therefore globally satisfy the conditions of entropy increase within a short time,
which in one extreme case requires fast adjustments of global extent and in the other extreme
case means that the system or large parts of the system were already practically isolated before.

Further substituting on the left-hand side of Eqn. 2.26 ∆T using the heat conduction equation
2.38, with a reference temperature TR and the integration constant − log(TR), we obtain

dS

dt
=

∫
k
∆T

T
dV =

∫
k

α

∂T

∂t
T

dV =

∫
ρc
∂

∂t

(
log

(
T

TR

))
dV ≥ 0

and thus finally for temporally and spatially constant density ρ and heat capacity c:

dS

dt
= ρc

d

dt

∫
log

(
T

TR

)
dV ≥ 0 (2.30)

The monotonicity(≥) in 2.30 also assumes the validity of the right-hand part of Eqn. 2.26, i.e.,
also the global conservation of energy. Altogether we have assumed:

• constant volume

• constant energy

• density and heat capacity constant in time and space

Under these conditions, we can finally derive from Eqn. 2.30:

S = ρc

∫
log

(
T

TR

)
dV (2.31)

Due to Eqn. 2.39, the conservation of energy is equivalent to

0 =
dE

dt
=

d

dt

∫
δQdV =

∫
δQ

∂t
dV = cρ

∫
∂T

∂t
dV = cρ

d

dt

∫
T dV

and thus equivalent to the constancy of the temperature mean TM , namely:

dTM
dt

=
d

dt

1

V

∫
T dV = 0 (2.32)

Further, for the integral in Eqn. 2.31, it follows from Jensen’s inequality 3.30:

∫
log

(
T

TR

)
dV = V

∫
log

(
T

TR

)
dV

V
≤ V log

(
1

V

∫
T

TR
dV

)
= V log

(
TM
TR

)
So it is also:

S ≤ Smax := ρcV log

(
TM
TR

)
(2.33)
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In the last two inequalities, equality holds exactly when all temperatures are equal, i.e., in the case
of uniform distribution for which all temperatures in the system coincide with the temperature
mean TM . Since Smax is time independent according to Eqn. 2.32, it follows that entropy stops
increasing in any case when the temperature in the system is uniformly distributed, which we
identify with thermodynamic equilibrium.

So, in a summary, we can say that when the energy of the system is constant, the following holds:

• The volume integral over temperature and hence the temperature average are also constant
in time (Eqn. 2.32).

• The volume integral over the logarithm of the temperature is not necessarily constant
in time (Eqn. 2.30), but it is when the temperature is uniformly distributed, which is
the thermodynamic equilibrium (Eqn. 2.33 and 2.32), at which the entropy reaches its
maximum value.

Relations to the Third Theorem

Finally, it is noticeable that the results 2.26, 2.30 and 2.33 seem to have no validity at the absolute
temperature zero T = 0, which would be in clear contradiction to the third law11, according to
which the entropy of a system in thermodynamic equilibrium has a definite and in any case finite
value. For equations 2.30 and 2.33 this is clear because the logarithm does not exist at T = 0.
But the same is true for the right side of Eqn. 2.26 because of T ′

/T = log(T )
′ .

The resolution of the contradiction lies, as described in Third law of thermodynamicd - Specific
heat12, in the temperature dependence of the specific heat capacity, for Fermi gases and for Bose
gases, respectively:

CV ∼ T

CV ∼ T 3/2

The temperature dependence of the specific heat in thermodynamic equilibrium is most easily
and clearly noticeable according to eqn. 2.33. In the case of Fermi particles, e.g.

Smax ∼ TM log

(
TM
TR

)
which also converges to 0 in the limit TM → 0.

2.2.2 Globality and finite two-part systems

The core of the argumentation of the last section can be countered by a lack of reality. The core
is that the two-part system is irrelevant for entropy as long as it has finite size. Now, instead, one
can also argue the antithesis, according to which every two-part system and the global relations
between the two parts of even arbitrary finite size are at least related to the actual entropy of
the system. In this idea, the two temperatures T1 and T2 represent mean values of the respective
subsystem, on the basis of which equations 2.5, 2.6 and 2.7 or, say, Eqn. 2.11 provide an initial
estimate of the actual entropy increase of the overall system. This is exactly what we all do when
we find gross imbalances for a system, e.g., that between a low pressure and a high pressure area,

11https://en.wikipedia.org/wiki/Third_law_of_thermodynamics
12https://en.wikipedia.org/wiki/Third_law_of_thermodynamics#Specific_heat

https://en.wikipedia.org/wiki/Third_law_of_thermodynamics
https://en.wikipedia.org/wiki/Third_law_of_thermodynamics#Specific_heat
https://en.wikipedia.org/wiki/Third_law_of_thermodynamics#Specific_heat
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and derive conclusions for the balance between the two subsystems. And we do this even without
the precise analysis of each of the two subsystems.

First of all, we are interested in the second law, and therefore we consider an isolated system
which is decomposed into two parts with mean temperatures T1 and T2, deferring the question
of the exact definition of what we mean by the mean value. And further we take – according
to what has been said so far – that Eqn. 2.9 and 2.10 or also 2.11 express a first reasonable
estimate for the entropy increase of the system. The following figure sketches the system with
its two subsystems S1 and S2:

S1 S2

Table 2.2: Two-part system

The assumption for the physical meaning of this decomposition is that the global heat exchange
has also a directly global aspect13 and points to the existence of global relations and is not
alone the spatial expansion of local relations taking place in time. If we even assume that the
decomposition of the system into the subsystems S1 and S2 is nothing else than the decomposition
of all relations into those (global) across the two subsystems and all remaining (local) relations
within each subsystem, then the decomposition implies at the same time that from the isolation
of the whole system with respect to the determination of entropy also the isolation of each
subsystem S1 ,S2 follows, insofar as its external relations are already completely captured by the
entropy between both systems and the isolation of the system as a whole. The continuation of
the decomposition of each subsystem in its turn into subsystems

S11 S12 S21 S22

Table 2.3: Example 1: Continued division of the two-part system

or e.g.

S11 S21

S12 S22

Table 2.4: Example 2: Continued division of the two-part system

therefore also implies the continuation of the entropy determination on the basis of the entropy
autonomy of each subsystem in such a way that the entropy – besides an external measure –
can be traced back to the measure of exclusively internal relations, which for each system is
independent of its environment.

13Cf. section 5.2.2 on the contrast of relations and particles in three-dimensional space

https://en.wikipedia.org/wiki/Second_law_of_thermodynamics
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Overall, this results in a hierarchical recursive relationship for the entropy determination, which
differs from the linear-neighborhood relationship between the cells of the previous section. This
can be illustrated, for example, as follows for eight cells C1 to C8:

C1 ↔ C2 ↔ C3 ↔ C4 ↔ C5 ↔ C5 ↔ C7 ↔ C8

Table 2.5: Linear-neighborhood (extensive) relationship

Illustrating hierarchical recursive exchange, on the other hand, requires a representation taking
into account different scales, which are shown line by line from top to bottom down the scale in
the following figure:

C1 ↔ C2

C11 ↔ C12 C21 ↔ C22

C111 ↔ C112 C121 ↔ C122 C211 ↔ C212 C221 ↔ C222

Table 2.6: Hierarchical (intensive) correlation

The red colored areas in the table represent neighborhood relationships between the two neighbors
to the left and to the right, whose boundary heat flux is disregarded at the respective scale because
this already occurs upscale.

First, it can be stated that the basic monotonicity ∆S ≥ 0 of Eqn. 2.19 and 2.26 of the linear
relation follows directly in the case of the hierarchical relation, since each subsystem – as a two-
part system – makes a non-negative contribution to the entropy according to Eq. 2.11, if one
additionally assumes that the different contributions to the total entropy are merged completely
or partially – in principle summarily, anyway. Each scale represents an estimate to be added to
the total entropy.

However, the question arises about the relation of both correlations. For the linear relation,
entropy is a sum of neighborly exchange entropies of parity subsystems – with the exception
of those of the periphery. The hierarchical relation sums exchange entropies of neighboring
subsystems as well, but because of the hierarchy, subsystems of all possible sizes are included in
the sum. Therefore, it makes sense to anticipate section 3.3.3 about the complexity of partition
hierarchies and locality and to demonstrate that e.g. the Shannon entropy is identical for both
perspectives, which also puts the theses of locality and globality on an equal footing. For instance,
let us start from the hierarchical relation according to table 2.6 and abstractly describe the
relations between the subsystems C1 and C2 by the Shannon entropy

S(C1, C2) := −p1 log(p1)− p2 log(p2)

with the possibly unequal weights p1 and p2, for which p1 + p2 = 1 holds. In the same way we
can describe the relations between the subsystems C11 and C12 and also those between C21 and
C22:

S(C11, C12) := p1(−p11 log(p11)− p12 log(p12))

S(C21, C22) := p2(−p21 log(p21)− p22 log(p22))
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Then, because of p11 + p12 = 1, we get:

−p1 log(p1) + p1(−p11 log(p11)− p12 log(p12)) =

−p1(p11 + p12) log(p1) + p1(−p11 log(p11)− p12 log(p12)) =

−p1p11 log(p1p11)− p1p12 log(p1p12)

Since the analogous holds for the subsystem C2 and its subordinate subsystems, it follows over-
all because p1 · p11, p1 · p12, p2 · p21, p2 · p21 is the probability distribution for the subsystems
C11, C12, C21 and C22:

S(C1, C2) + p1S(C11, C12) + p2S(C21, C22) = S(C11, C12, C21, C22) (2.34)

The relationship of the hierarchically arranged systems, represented by the left side of the above
equation, is thus equal to the relationship of the linearly arranged systems, represented by the
right side of the equation (cf. also Eqn. 3.13 and 3.15 f.).

2.2.3 Physically distinguished points

A consequence of the linear-hierarchical relation is as follows: Let

f : R× R→ R

be a possibly discontinuous but integrable function in the second argument. The first argument
may express holistic dependence on an environment, so that the function values change, especially
when the environment is increased. Suppose, for example, that physical meaning in terms of
measurability is only sums (integrals

∫
f(x, x

′
) dx

′ and averages over intervals with possibly very
short interval lengths ≥ 0) of the function values of f and, in addition, that according to the last
section also each scale contributes to the summation of f , but on each scale always only one half
around a selected point, as shown by the white and gray highlighted cells of the following figure:

C1 C2

C11 C12

C111 C112

Table 2.7: Asymmetrisierung durch Auswahl

In a continuous scale space, the one-sided selection for summation according to table 2.7 corre-
sponds to a double integral

F (x) = ±1
∫ x

0

(∫ x
′

0
f(x

′
, x

′′
) dx

′′

)
dx

′
(2.35)

for which the integral upper bound x of the outer integral has the meaning of a continuous
reciprocal scale, and the inner integral represents the actual summation of the function values
of f . The function F defined by the integral is the physical quantity derived from f in relation
to the reference point 0. By the method of double summation all points x′ are distinguished in
relation to other points x > x

′ , in a special way – more than all others – the point 0.
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The opposite of the above distinction is averaging

F (x) =
1

x

∫ x

0
f(x, x

′
) dx

′
(2.36)

which resembles a smoothing and reduces the highlighting of distinguished points in the interval
[0, x]. For those functions which represent distributions without any distinguished points, i.e.
the constant functions or the uniform distributions, the averaging reproduces constant functions.
Thus, if f ≡ 1, then:

F (x) =
1

x

∫ x

0
1 dx

′
= 1

Another special case is when the award according to Eqn. 2.35 leads to the same result as the
smoothing according to Eqn. 2.36. Then, the inner integral in Eqn. 2.35 can be replaced by
x

′
F (x

′
) according to Eqn. 2.36. We then receive

F (x) = ±
∫ x

0
x

′
F (x

′
) dx

′

and by derivation

F
′
(x) = ±xF (x)

which finally is solved by:

F (x) =
1√
2π
e
±
x2

2 (2.37)

The sign in the exponent of F can be positive or negative. In both cases F describes a physically
distinguished point, in the first case with the maximum of the normal distribution and in the
second case with a minimum.

Thus, the normal distribution is equally related to the asymmetry as to the symmetry of space.
In its symmetric property it is the uniform distribution of the infinite extensive space.14

2.3 Expansion, contraction and time reversal

2.3.1 The heat equation

Connection with entropy increase

From the continuity equation15, Fourier’s law16 and the definition of heat capacity (cf. in par-
ticular heat flow in a uniform rod17) follows the heat equation:

∂T

∂t
= α∆T (2.38)

The definition of the heat capacity c, or its relationship to the density ρ and temporal changes
in heat and temperature at a location, is:

14Cf. section 3.5.4
15https://en.wikipedia.org/wiki/Continuity_equation#Energy_and_heat
16https://en.wikipedia.org/wiki/Thermal_conduction#Fourier’s_law
17https://en.wikipedia.org/wiki/Heat_equation#Heat_flow_in_a_uniform_rod

https://en.wikipedia.org/wiki/Continuity_equation#Energy_and_heat
https://en.wikipedia.org/wiki/Thermal_conduction#Fourier's_law
https://en.wikipedia.org/wiki/Heat_equation#Heat_flow_in_a_uniform_rod
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δQ

dt
= cρ

∂T

∂t
(2.39)

Thus, the heat equation can also be derived from Eqn. 2.24, in which the continuity equation
and Fourier’s law have already been processed: First, it follows from Eqn. 2.24:

δQ(r)

dt
= k ·∆T

Further, because δQ in Eqn. 2.39 is equal to the net heat flux per unit volume, the left-hand
side of this equation is identical to the left-hand side δQ/dt of the Equation above, so the two
right-hand sides also agree:

cρ
∂T

∂t
= k∆T

With α := k/cρ, the heat equation 2.38 follows.

In this derivation, the peripheral boundary condition 2.17, which implies the conservation of
energy by isolation according to Eqn. 2.20, is not assumed, rather only the local relation δQi =
δqi − δqi−1 of the continuity equation in the form of Eqn. 2.15.

In summary: The heat equation 2.38 summarizes three of the four conditions for the entropy
increase according to Eq. 2.26. It lacks the condition of isolation or global conservation of energy.

Interpretation of the heat equation

In the interpretation of the heat equation given here18, it describes, from the perspective of a
point r in space, the infinitesimal process of temperature change at r over time. The process is
decisively determined by the difference

−[T (r)− T (U(r))]

between the temperature T (r) at this point and the mean temperature T (U(r)) of its environment
U(r), which does not contain r itself. This follows, although very simplified, but quickly also
directly from Fourier’s law and Eqn. 2.23. First according to Fourier’s law and Eqn. 2.21, for a
cube ijk with ∆x = ∆y = ∆z = ∆l the following equations

δqijk,x − δq(i−1)jk,x = k(T(i+1)jk − Tijk)∆l∆t− k(Tijk − T(i−1)jk)∆l∆t

δqijk,y − δqi(j−1)k,y = k(Ti(j+1)k − Tijk)∆l∆t− k(Tijk − Ti(j−1)k)∆l∆t

δqijk,z − δqij(k−1,z) = k(Tij(k+1) − Tijk)∆l∆t− k(Tijk − Tij(k−1))∆l∆t

hold and thus also according to eqn. 2.23:

δQijk = −6k∆l∆t
(
Tijk −

T(i+1)jk + T(i−1)jk + Ti(j+1)k + Ti(j−1)k + Tij(k+1) + Tij(k−1)

6

)
(2.40)

18https://en.wikipedia.org/wiki/Heat_equation#Interpretation

https://en.wikipedia.org/wiki/Continuity_equation#Energy_and_heat
https://en.wikipedia.org/wiki/Heat_equation#Interpretation
https://en.wikipedia.org/wiki/Thermal_conduction#Fourier's_law
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In this equation all temperatures are mean values. The fraction is therefore an average of the
temperature averages of the 6 cubes surrounding the cube ijk, and it is thus the temperature
average of the environment Uijk of the cube ijk formed by the 6 cubes, which itself is not
contained in Uijk. To make it clearer how the result is related to the spatial order and the
temperature curvature ∆T , we again consider only a one-dimensional space with three cells, an
inner cell with temperature T and its neighboring left and right cells with temperatures Tl and
Tr:

Tl T Tr

Table 2.8: System of three cells

The mean temperature of the environment is 1/2(Tl+Tr), and for its difference from the internal
temperature T

Tl + Tr
2

− T =
1

2
[(Tr − T )− (T − Tl)]

applies. Finally, the difference in the bracket on the right side of this equation corresponds in the
limit of small cells with the curvature ∂2T/∂x2, as it is shown in more detail by the calculation
of the net heat flux in 2.2.1.

If the result is additionally considered against the background of energy conservation, e.g. in the
simplified form according to Eqn. 2.32, i.e. under the condition of a constant global temperature
mean, then the two theorems establish the rules of a zero-sum game applicable to spatial neigh-
bors, while the heat equation describes the game evolution whose outstanding feature is that
each point bows to the majority decision of its surrounding collective in such a way that local
extrema of the temperature distribution are degraded and the points of space distinguished by
them increasingly fade away. Altogether, the heat equation with its interpretation of infinites-
imal averaging is the differential interpretation of a global smoothing and propagation process,
as shown by the fundamental solution of the equation, which for the one-dimensional case is

TF (x, t− t0) ∼
1√

4πα(t− t0)
e
−

x2

4α(t− t0) (2.41)

which is a normal distribution with monotonically increasing variance σ2 = 2α(t − t0) as a
function of time.

Time reversal and time symmetry

The fundamental solution shows that it is not a solution of the equation for negative co-efficients
α. Now this change of sign is equivalent to the time reversal (see below). The heat equation thus
becomes a backward parabolic differential equation19. As the just referenced article in Wikipedia
shows, the equation is even considered as an improperly posed problem in that case:

An initial/boundary-value problem for a backward parabolic PDE is usually not
well-posed (solutions often grow unbounded in finite time, or even fail to exist).[7]

19https://en.wikipedia.org/wiki/Parabolic_partial_differential_equation#Backward_parabolic_equation

https://en.wikipedia.org/wiki/Parabolic_partial_differential_equation#Backward_parabolic_equation
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In doing so, the article refers to the definition of the correctly posed problem given by the French
mathematician Jacques Hadamard, as the following quote shows:

The mathematical term well-posed problem stems from a definition given by 20th-
century French mathematician Jacques Hadamard. He believed that mathematical
models of physical phenomena should have the properties that: 1. a solution exists,
2. the solution is unique, 3. the solution’s behaviour changes continuously with the
initial conditions.[9]

This article gives as an example of an incorrectly posed problem:

Problems that are not well-posed in the sense of Hadamard are termed ill-posed.
Inverse problems are often ill-posed. For example, the inverse heat equation, deducing
a previous distribution of temperature from final data, is not well-posed in that the
solution is highly sensitive to changes in the final data.[9]

In any case, this reveals with clarity that the equation with negative coefficients describes com-
pletely different realities. In fact, the change turns all properties of the equation with positive
coefficient upside down. First of all, this includes the reversal of the smoothing into an unre-
strained spreading of local temperature differences. Thus, the equation has basically the ten-
dency to increasingly mark out singular spatial points, those with local temperature maximum
or minimum, in front of the points of their respective surroundings. At the same time, however,
neighboring and non-neighboring extrema compete with each other in a complex way, so that
solutions of the equation will generally be unstable depending on their initial values. But also
here the equation describes the course of a zero-sum game, but this time with actors exclusively
competing for the globally constant resource energy.

Thus, while positive coefficients level differences by smoothing, avoid or reduce competition, and
imply stable solutions, negative coefficients favor the opposite, the growth of existing differences,
(apparent) spontaneity, the emergence of competition, and the state of permanent instability
associated with the extremely sensitive dependence on initial values.

The change of sign of the coefficient α in the heat equation 2.38 is equivalent to the reversal of
time dt → −dt, because only the temporal change of the temperature depends on the direction
of time:

∂T (r, t− t0)
−∂t

= α∆T (r, t− t0)⇔
∂T (r, t− t0)

∂t
= −α∆T (r, t− t0) (2.42)

∂T (r, t− t0)
−∂t

= −α∆T (r, t− t0)⇔
∂T (r, t− t0)

∂t
= α∆T (r, t− t0) (2.43)

According to the above, the heat equation thus describes – with fixed sign of α – a completely
different behavior for the evolution into the future as for that into the past and in this sense
breaks the symmetry of time. While, for α ≥ 0, the temperature distribution locally as well
as globally always approaches the unambiguous target of the uniform distribution or the linear
distribution, the development in backward time direction is neither determined nor stable insofar
as its development depends on smallest fluctuations in the initial values.

Time reversal and reversibility

However, the instability and sensitive dependence of the backward state development on all
details of the state is not equivalent to an irreversibility in the sense of a fundamental impossibility
to reconstruct past states unambiguously on the basis of the current state. The irreversibility
is seemingly obvious because of the smoothing, for the completed smoothing in the form of

https://en.wikipedia.org/wiki/Jacques_Hadamard
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the uniform distribution or the linear distribution is undoubtedly not reversible indicating that
already the beginning of smoothing might exclude the possibility of a definite reconstruction.
On the other hand, the fundamental solution 2.41 gives an example of the fact that the uniform
distribution is not reached in finite time, and in its case the distributions of the past for the
period (t0, t) are unambiguously derived from the distribution at time t. Also, in this interval
it is actually a solution of the heat equation with negative coefficient α and backward running
time, because for the fundamental solution

TF (r, t− t0, α) = TF (r, t0 − t,−α)

holds. Reversing the time direction dt→ −dt, because TF satisfies the heat equation in positive
time direction with positive coefficient, results in:

∂TF (r, t0 − t,−α)
−∂t

=
∂TF (r, t− t0, α)

−∂t
= −α∆TF (r, t− t0, α) = −α∆TF (r, t0 − t,−α) (2.44)

Reversibility means that the state function does not suffer any loss of information by the update
in time, i.e. structures are smoothed but do not disappear – in finite time. The fundamental
solution is a perfect example of a smoothing without structural change, since the update in time
is nothing else than a reversible and norm-preserving transformation20 in space, which assigns
the distribution Tσ(t) to the initial temperature distribution T0 for each time t > t0. For with
f(x) := e(−1/2)x2 Eqn. 2.41 becomes

T (x, t− t0) ∼
1

σ
e
−
1

2

(x
σ

)2

=
1

σ
f
(x
σ

)
where in the dependence ∼ (1/σ)f(x/σ) the norm conservation is shown, with which the abscissa
is stretched by the increasing factor σ and the ordinate values are compressed in return by the
same factor. Incidentally, as a consequence of this, the integral over the temperature and thus
also the temperature mean is time-independent, which follows more precisely from Integration
by substitution as follows:

∫ +∞

−∞
T (x) dx ∼ 1

σ

∫ +∞

−∞
f
(x
σ

)
dx =

∫ +∞

−∞
f(x) dx (2.45)

At this point, it may also be noted that the fundamental solution TF has no finite entropy
because TF is a solution of the heat equation 2.38, for which the coefficient α and hence the
density ρ are assumed to be constant in space (and time). Based on the heat equation, we also
derived Eq. 2.31, from which, for the entropy of the fundamental solution follows:

S = ρc

∫
log

(
T

TR

)
dx ∼

∫ +∞

−∞
x2 dx

Let us return to the reversibility of the fundamental solution, which is obviously related to the
fact that the scale transformation on the abscissa is unrestricted by the possibility of unlimited
expansion in infinite extensive space, which does not apply to spatially finite systems by defini-
tion. Here, let us say, squeezing is unavoidable, i.e. the expansion does not take place in extensive

20Cf. section 3.5.5

https://en.wikipedia.org/wiki/Integration_by_substitution
https://en.wikipedia.org/wiki/Integration_by_substitution
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space but in intensive space. To examine this more closely, we consider the temperature change
dT after the expiration of the time dt, as it results according to the heat equation:

dT+(r, t) = α∆T (r, t)dt

Now we let time run backwards, i.e. we evolve the changed temperatures backwards according
to the heat equation with the negative coefficient −α. We obtain:

dT−(r, t+ dt) = −α∆T (r, t+ dt)dt

If the backward heat equation allows to revise the infinitesimal changes of the forward equation,
then the error

err(r, t) := dT+(t) + dT−(t+ dt)

must be sufficiently small. The following results from the two equations

err(r, t) = −α(∆T (r, t+ dt)−∆T (r, t))dt

and with it:

err(r, t) = −α∂∆T
∂t
· dt2 = −α∂

2T

∂t2
· dt2 (2.46)

If the time derivative ∂∆T/∂t or equivalently the second derivative ∂2T/∂t2 exists and is
bounded, then the error is a second order differential and therefore very small relative to the
temperature change itself, so that reconstruction is possible even over finite time intervals.

However, also the conditions of reversibility become clear, which consist in the fact that the spa-
tial as well as the temporal temperature changes must be sufficiently smooth also on arbitrarily
small scales. If this is the case, then the local process of the heat equation possibly corresponds
to a local scale transformation which is reversible with sufficient accuracy. However, if tem-
perature fluctuations do not break down even in the limit of small space or time scales, then
the above equation indicates the magnitude of the scale-dependent error. Smooth, differentiable
temperatures are then only temperature averages on finite scales. The mean value interpretation
of the heat equation presented in section 2.3.1 shows that the process of heat conduction based
on averaging in an infinitesimal environment of a point r in space can be well defined even for
non-differentiable temperature distributions, as described in that section.

Self-reference and the singularity of the fundamental solution

The fact that the reconstruction of the fundamental solution at time t0 ends in a singularity
has a deep and in any case no accidental meaning, which can be seen better by looking at
diffusion21 of particles, because this, unlike the heat diffusion, can also be visible in everyday
life in the true sense of the word. The diffusion equation22 is also identical in its simple form
with the heat equation, so that diffusion can actually be used to illustrate heat diffusion as well.
In particular, the phenomenon of diffusion in the coffee cup, which we all know, can be used
here, which we observe when coffee and poured milk or cream mix with each other. After some
time, we perceive a homogeneous, i.e. evenly distributed, mixing state. If we would film the
diffusion process with a camera and let the film run backwards, out of – the assumed – uniform
distribution unpredictable colorations would arise, reflecting concentration clusters of the coffee
or cream particles, of which some – which, again, is practically not determined – increase in
intensity. If one assumes that the real process completely follows the diffusion equation, then

21https://en.wikipedia.org/wiki/Diffusion
22https://en.wikipedia.org/wiki/Diffusion_equation

https://en.wikipedia.org/wiki/Diffusion
https://en.wikipedia.org/wiki/Diffusion_equation
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the said indeterminacies of the backward evolution are, as mentioned above, however, only a
consequence of incomplete knowledge in detail. The time reversal singularity at t = t0 shows
the limits of the model describing diffusion as a self-referential process, self-referential because
the time evolution of the state function, in the case of heat diffusion the temperature, depends
exclusively on the state function itself, namely its curvature ∆T . In other words, the system
determines the evolution of its state itself, in positive as well as negative time direction. This
self-reference of the system is now interrupted at time t = t0, the time of the unification with
another system , so that the diffusion equation at t0 can also have no solution, since it only
describes the self-referential development of the system, and this therefore – also in backward
time – would only remain with itself, but actually interacts with the environment. In this respect,
the singularity of the fundamental solution is an expression of the fact that the self-reference of
the system comes to a conclusion, i.e. the system can no longer describe itself.

The continuity equation

At the beginning of section 2.3.1, we pointed out that the heat equation follows from the continu-
ity equation for heat energy, Fourier’s law and the connection of the local temperature change on
one side and the heat capacity and density on the other side. This connection allows to replace
the heat energy in the continuity equation – for heat energy – by the temperature, so that one
can expect the heat equation to be a continuity equation – for temperature – as well. To see this
clearly, let us consider the general continuity equation23 for a quantity ρ that is in differential
form and with the definition of the flux density

j = ρu (2.47)

as follows:

∂ρ

∂t
+∇ · (ρ · u) = ∂ρ

∂t
+∇ · j = σ (2.48)

In it u is a velocity field, according to which the intensive quantity ρ, which in our imagination
is often a density, moves dependent on location and time. If ρ is locally conserved, then σ ≡ 0.
According to the Gaussian divergence theorem24 the integral form is also valid. Specifically, for
a locally conserved quantity ρ holds:

d

dt

∫
ρ dV +

∮
j · dS = 0 (2.49)

In this equation, the first integral is a volume integral over the conserved quantity in a region G
and the second is a surface integral over the scalar products j · dS on the surface of the region.
The surface integral calculates the total current flowing out of area G through the surface minus
the total current flowing in.

We can now put the heat equation 2.38 into the following form

∂T

∂t
+∇ ·

(
T ·
(
−α∇T

T

))
= 0 (2.50)

from which, by comparison with the general form of the continuity equation 2.48, it follows
immediately that the heat equation is also a continuity equation with density ρ = T and velocity

23https://en.wikipedia.org/wiki/Continuity_equation#General_equation
24https://en.wikipedia.org/wiki/Divergence_theorem

https://en.wikipedia.org/wiki/Continuity_equation#General_equation
https://en.wikipedia.org/wiki/Divergence_theorem


2.3. EXPANSION, CONTRACTION AND TIME REVERSAL 35

field:
u = −α∇T

T

Eqn. 2.49 makes it possible to identify a simple and sufficient criterion for the locally conserved
quantity to be also a globally conserved quantity. Namely, this is certainly the case if j · dS = 0
holds on the whole surface of the domain G, i.e. if the current everywhere along the surface
disappears or at least runs parallel to it, and the system thus has no exchange with the environ-
ment of G. For a thermodynamic system, we would say in that case that the system is isolated,
which corresponds to the definition of the open rod in section 2.2.1. The integral form of the
heat equation 2.50 is then

d

dt

∫
T dV = 0

from which, as in Eqn. 2.32, the time constancy of the temperature mean value
1

V

∫
T dV in the

defined area G results.

Another consequence of this section is that not only the heat equation and the diffusion equation,
but also the continuity equation is related to breaking the symmetry of time.

Single vs. double stream

As the previous sections show, time symmetry is broken by the heat equation and the diffusion
equation. In contrast, space symmetry remains unaffected because the equations are invariant to
the reversal of the direction in space as a result of the second derivative ∂2/∂x2. The consequences
of time reversal are reflected by the equivalences 2.42 and 2.43, which go back to the fact that
the time derivative is of first order only.

The continuity equation 2.15 represents both relations, with respect to time and space, at the
same time. First, reversing directions in space leaves the continuity equation

δQi = (−δqi−1)− (−δqi) = δqi − δqi−1 (2.51)

and thus δQi unchanged. The second order derivative mentioned above is expressed in Eqn.
2.51 through the sign reversal of the boundary heat fluxes δqi → −δqi in conjunction with
the cell order reversal represented by the index i. The fundamental possibility for this reflects
the symmetry of space, which does not favor either direction and leaves room for directional
definition. Once one direction is chosen as preferred, the sign of the boundary heat fluxes δqi is
uniquely determined by the second law sgn(δqi) = sgn(Ti+1 − Ti) (Cf. Eqn. 2.18). On the other
hand, as already mentioned, the sign of the net heat flux δQi and thus that of the coefficient α
in the heat equation is independent of the said choice and therefore exclusively determined by
the second law, so that overall the broken symmetry of time is solely a consequence of the second
law and its universal validity.

Obviously, the time symmetry would be fulfilled, if there would be not only one, but beside this
a second stream, so that besides the universality of the second law at the same time its inversion
could manifest itself. This is obvious in so far as – also in the classical particle model – the heat
stream and in our conception above all the particle stream along a space axis actually seems
to consist of two streams, since particles and impulses move in the one as well as in the other
direction. However, the prerequisite for the derivation of the heat equation and the diffusion
equation, but also for the definition of the more general continuity equation, is always a singular
current, which combines the two parts of the – according to our conception existing – double
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stream. But the fact that it is indeed a single stream only follows from the indistinguishability of
the particles. Because the distinction of particles with opposite velocities presupposes also their
distinguishability.

A double stream would first of all have the potential to preserve the symmetry of time and
therefore also the potential to allow expansion and contraction at the same time in only one
direction of time.

2.3.2 The Schrödinger equation

Time symmetry of the double stream

In a summary of the previous sections we can say the following: The fundamental solution 2.41
and more generally the mean value interpretation of the heat equation in section 2.3.1 shows that
the equation describes an expansion process. Thus, the heat equation and with it the diffusion
equation – in positive time direction and with positive coefficient α – cannot represent the reverse
process of contraction in principle. In other words, in one time direction it can describe either
only the expansive or only the contractive process.

Since now both expansion and contraction are obviously part of reality in positive time direction,
the question remains for an equation which is able to represent both aspects of reality at the same
time. Such an equation can possibly be symmetrical also in time, because with time reversal it
then maps expansion and contraction likewise.

It turns out that it is the Schrödinger equation25 which reflects the dualism of both realities of
expansion and contraction – in one time direction – and at the same time elevates the symmetry
of time even to a principle. The Schrödinger equation of a particle with the potential ϕ(r, t) is
in its general complex representation

iℏ
∂ψ(r, t)

∂t
= − ℏ2

2m
∆ψ(r, t) + ϕ(r, t)ψ(r, t) (2.52)

which is equivalent to
∂ψ

∂t
= i

ℏ
2m

∆ψ − iϕ
ℏ
ψ, from which, if we convert ψ into its real ψa and

imaginary part ψb so that ψ = ψa + i · ψb holds, it follows:

∂ψa

∂t
+ i

∂ψb

∂t
= − ℏ

2m
∆ψb + i

ℏ
2m

∆ψa − i
ϕ

ℏ
+
ϕ

ℏ
ψb

This equation now is equivalent to the two coupled differential equations

∂ψa

∂t
=

(
− ℏ
2m

∆+
ϕ

ℏ

)
ψb (2.53)

∂ψb

∂t
=

(
+

ℏ
2m

∆− ϕ

ℏ

)
ψa (2.54)

for the two (twin) functions ψa and ψb. The comparison of both equations for vanishing potential
ϕ ≡ 0 with the heat equation 2.38 shows that, in contrast to the latter, the Schrödinger equation
of the free particle is dualistic and presumably unites both sides of reality – the expansion and
the contraction, the collectivistic subordination and the individualistic distinction as well as the
accompanying stability and instability with the coefficients α = +ℏ/2m and α = −ℏ/2m.

25https://en.wikipedia.org/wiki/Schrödinger_equation

https://en.wikipedia.org/wiki/Schr�dinger_equation
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As in the case of the heat equation26, the time reversal dt → −dt changes the sign in both
equations only on the left side and thus fundamentally changes the equation system. But this
change is equivalent to the exchange of the two – in the system of equations – anti-symmetric
functions ψa and ψb, so that the time reversal leaves the system structurally unchanged and
both time directions are therefore of the same kind and in principle have the same development
potential.

In particular, the two functions – unlike the heat conduction equation, the diffusion equation,
and the continuity equation, each with only one (density) function – represent the double stream
mentioned in the previous section for maintaining time symmetry. Each of the two streams by
itself, but not their unity, favors one direction of time. Analogous to heat conduction27 represents

−∆ψb =

∂ψb(x)

∂x
− ∂ψb(x+ dx)

∂x
∂x

the relative difference of two boundary streams (momentum) at the boundaries of a cell Cn,
as shown in Table 2.9 below. With respect to this cell, ∂ψb(x)/∂x is the value of an inflowing
stream and ∂ψb(x + dx)/∂x is the value of an outflowing stream, so the difference calculates a
net influx into cell Cn, which – like the boundary streams of heat conduction – can be positive
or negative and can be registered in the cell as a change ∂ψa/∂t of ψa, if the potential satisfies
ϕ ≡ 0, i.e. if it is a free particle.

Cn−1 Cn Cn+1

∂ψb(x)

∂x
→ ∂ψb(x+ dx)

∂x
→ . . .

∂ψa

∂t

Table 2.9: Boundary flux ∂ψb/∂x and net influx ∂ψa/∂t of a free particle

The second part 2.54 of the Schrödinger equation represents the same relationship but with
respect to the reversed direction of space with an inflow ∂ψa(x + dx)/∂x into and an outflow
∂ψa(x)/∂x from cell Cn:

Cn−1 Cn Cn+1

∂ψa(x)

∂x
← ∂ψa(x+ dx)

∂x
← . . .

∂ψb

∂t

Table 2.10: Boundary flux ∂ψa/∂x and net influx ∂ψb/∂t of a free particle

26Cf. the equivalences 2.42 and 2.43
27Cf. the magnitude of the net heat flow in section 2.2.1
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Double stream vs. single probability stream

Multiplying Eqn. 2.53 by the function ψa and Eqn. 2.54 by ψb gives:

1

2

∂

∂t
ψa

2 = ψa
∂ψa

∂t
= − ℏ

2m
ψa∆ψb +

ϕ

ℏ
ψaψb (2.55)

1

2

∂

∂t
ψb

2 = ψb
∂ψb

∂t
= +

ℏ
2m

ψb∆ψa −
ϕ

ℏ
ψaψb (2.56)

Adding both equations and multiplying by 2 results in

∂

∂t

(
ψ2
a + ψ2

b

)
=

ℏ
m
(ψb∆ψa − ψa∆ψb) (2.57)

which is consistent with the quantum mechanical continuity equation28. Since the magnitude
square ψ2

a+ψ
2
b of the wave function in quantum mechanics is considered as the probability density

function of finding the particle in space, the left side of the above equation is the temporal change
of this probability and the right side is therefore the associated probability stream, which can be
interpreted as such in particular because it does not explicitly depend on the potential ϕ, and
as a consequence the density change on the left side is exclusively caused by the stream.

In the equation, the relation between time reversal and the anti-symmetry of the functions ψa and
ψb holds unchanged, i.e., the time reversal is equivalent to the interchange of the two functions,
so that also the probability stream can evolve in both directions of time in the same way and
has the potential for contractive as well as for expansive state evolutions in both directions, as
also the discussion about the question Is it possible for ∆x of any free particle wave packet to
be decreasing at any time?29 on StackExchange shows. Namely, it is shown there that while the
momentum variance remains unchanged, the variance ∆x2 of a Gaussian wave packet can fall or
grow in time t according to:

∆x2 =
τ2 − t2

τ2

So also the free particle has the potential for contraction and equally for expansion, so that in
particular the contraction is not necessarily the consequence of a continuing potential, which
is analogous to a collective of classical free particles, which in principle can be in the state of
contraction as well as in the state of expansion.

28https://en.wikipedia.org/wiki/Continuity_equation#Quantum_mechanics
29https://physics.stackexchange.com/questions/54534/is-it-possible-for-delta-x-sigma-x-of-any-free-particle-

wave-packet-to-b?noredirect=1&lq=1

https://en.wikipedia.org/wiki/Continuity_equation#Quantum_mechanics
https://physics.stackexchange.com/questions/54534/is-it-possible-for-delta-x-sigma-x-of-any-free-particle-wave-packet-to-b?noredirect=1&lq=1
https://physics.stackexchange.com/questions/54534/is-it-possible-for-delta-x-sigma-x-of-any-free-particle-wave-packet-to-b?noredirect=1&lq=1
https://physics.stackexchange.com/


Chapter 3

Fundamentals of entropy

3.1 Complexity, diversity and real size

The interpretation of the second law and of entropy in general was early connected with the
idea of molecular chaos1, in which the particles move with great variety relative to each other or
relative to a selected velocity. The increase of entropy is in this conception correspondingly the
increase of this variety of motion. However, one must separate two things, i.e.

1. The global chaos of (relative) velocities

2. The distribution of such chaos in the position space

The global chaos is closely connected with the law of conservation of energy, which sets a cumu-
lative limit to the range of relative velocities. If one neglects, as in an ideal gas, the potential
energy of the particles, then the energy is even a direct measure for the global basically possible
variety of velocities. But this also means that the kinetic energy itself does not force the variety,
but only determines the size of the space for it by its relationship with the velocity variance.
Possible and compatible with any energy are also statistically correlated states of motion with
only a few relative velocities. The increase of the global velocity variety from a narrow to a broad
spectrum is therefore a balancing, spreading development in the velocity or momentum space,
just as the chaos distribution expresses the balancing and the spreading of this variety of motion
in real space.

It is intuitively obvious to associate such diversity with complexity. More precisely, complexity
is characterized by two features. First, its system size, i.e. the number of its parts, which
conversely means that a small system with only a few parts cannot be complex. Second, its
symmetry or asymmetry, i.e. the number of its broken symmetries, which means that a system
is not necessarily complex by size alone, but only if the size is confirmed by the variety of
broken symmetries. So there may be many parts, for example, but because of their sameness
or similarity they increase the complexity only slightly or not at all. Conversely, it follows from
this that complexity is the real size of the system, so that the complexity finally depends on only
one parameter, this real size, which explains the simplicity of Boltzmann’s formula 1.2:

S = kB log(W )

The fact that this complexity is not the number W itself, but its logarithm, does not contradict
this, since after what has been said complexity only needs to grow monotonically with W . There
are two possible interpretations for the formula:

1Cf. section 5.1.1 about the Loschmidt paradox
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Counting principle: In a special interpretation for dynamical systems with a state space of
possible states and e.g. two subsystems withW1 andW2 states, respectively, W =W1·W2 is
the number of possible state combinations of the composite system and thus the number of
all states of this system when the states of the two subsystems are independent. According
to this counting principle already presented in the introduction, the complexity is due to

log(W1 ·W2) = log(W1) + log(W2)

additive. Nevertheless, it is not physically extensive, as will be discussed in more de-
tail in section 3.5.2. Also, the problem of this interpretation is already addressed in the
introduction.

Description complexity: In the interpretation used in this work log(W ) is the shortest de-
scription length of a system with W parts, as explained in section 3.3 dealing with the
complexity of namespaces, which have no other purpose than to allow the abstract distinc-
tion of the W parts of a whole with the least possible effort.

The simplest example for a system, which has even unlimited size and nevertheless seems simple
to us, is the real space. The reason for this simplicity is its geometric symmetry2, especially
the translation symmetry, but also rotational symmetry. Symmetry is a form of repetition,
which – for description – allows the summary of parts or, in other words, the abbreviated
description of parts with reference to a representing part, as for example in the natural numbers
the successor relation n → n + 1 is an ever-repeating relation. However, despite this simplicity
and symmetry, there is inherent asymmetry and concomitant complexity in extensive space and
equally in intensive space, which is one of the key messages of the present work.

This fundamental nature of complexity as a measure of true size is well known from reality. Serial
production, for example, is inexpensive because its manufacturing processes are always repeated
in the same way and, conversely, individual production is cost-intensive because each part to
be manufactured requires different manufacturing processes. Comparable to this is the routine,
which is simple because of its repetition, while deviation from the routine or, for example, from
a familiar organizational process is associated with complexity and with corresponding costs and
not infrequently also with rejection and errors. As another example, sorting into collectives of
parts each of the same kind has the purpose of reducing complexity, in that for each collective
the description of a whole of parts each of the same kind is short and therefore simple. The
description is short, because not every part has to be connected with a precise location, but a
common, i.e. summarizing and fuzzy and therefore short specification of the location is sufficient
for all parts. The fact that for the sorting (entropy reduction) costs have arisen before is another
matter.

The last example of sorting, however, reveals another general property of complexity or its
opposite, simplicity. For the sorting of representational things in physical space is the bringing
together of at least two categories of order, of which space itself is one. Each category, if it is
finite for simplicity, has a number of different characteristics. In computer science, the category
would be denoted by the key and the features by the values for each category. So there is the
category space for example with the characteristics left and right and for example the category
color with the characteristics white and black. The sorting consists of merging e.g. the features
left and white or right and black. The consequence of the merging is that the feature, e.g. white,
of a thing of one category can be read from the feature left of the other category, so that the
distinction of black and white can just as well be made by the distinction between left and right,
but also – and this is essential for entropy – conversely the spatial distinctness becomes possible
by that of the other category. Thus, for example, we make location indications even always with
reference to objects in the real space like e.g. beside or behind the tree or between the two clouds,

2https://en.wikipedia.org/wiki/Symmetry_(geometry)

https://en.wikipedia.org/wiki/Symmetry_(geometry)
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so that the matter and its distribution in space defines the reference system which only makes
location indications possible.

A similar process takes place in a process of cognition, which also brings together the features
of different concepts of order with the consequence that a complex inner state gives way to a
simpler one.

In physics, the position space and the velocity or momentum space are the central ordering
categories involved in all processes. If the particles of a physical system in the extreme case
all have the same velocity and thus occupy only a small part of the velocity space then the
description of the states of motion of all particles is possible in a simple and short way by
specifying this one velocity and combining the particles to a single collective. If, on the other
hand, the velocities differ from each other, then on the one hand the specification of only one
velocity is inaccurate and on the other hand the specification of many velocities is complex and
connected with corresponding expenditure.

In a more detailed consideration in the sense of the above mentioned combination of features
of different order categories for the reduction of complexity, we first find out that in physics we
have parts which we call particles, whose features are their positions and velocities or momenta,
if we again assume otherwise indistinguishable particles for the sake of simplicity. The sorting
and simplification mentioned above consists in assigning particles with the same velocity vector
to a cell in position space. Thus the particles are sorted according to their states of motion,
i.e. ordered, and at the same time the cells in space become distinguishable by the velocity of
each of their particles. Finally, the cells in space are distinguishable even if the particles in a
cell do not all have the same state of motion, but the state of motion averaged for each cell is
its own. In this case the chaos in a cell is already large, since we assume different velocities of
their respective particles, and it increases further with the velocity variance, which we finally
connect in the local temperature equilibrium with the cell temperature. As long as the local
temperatures (variances) are different, however, the particles are globally more or less correlated
and spatially sorted according to their state of motion, so that the complexity of the total system
has not yet reached its maximum.

3.2 Density entropy and motion entropy

The order categories merged in the last section are the position space on the one hand and
the velocity or momentum space on the other hand. Now we notice that beside this merging
there is another, but inauthentic merging. To see this, we deliberately assume indistinguishable
particles and ignore their respective velocity characteristics. The distribution of particles in
space basically corresponds to a sorting. On the other hand, there is nothing to sort because
of their indistinguishability. Thus, two categories of order are not merged. Rather there is only
one, space. The second aspect of the merging, which was emphasized as essential in the last
section, nevertheless applies, namely the distinguishability of the spatial features, i.e. of cells of
the space. There are cells with a particle and others without particles and, more generally, cells
in space are distinguished by the number or density of their particles. Cells with high density
are distinguished – in relation to their environment – before their neighboring cells.

Therefore, in order to interpret entropy, we have to distinguish between the two basic forms of
entropy. The second law is usually associated only with the heat energy or the spatial variations
of the temperature, as it is also done in chapter 2.2 about the second law. In this form, the law
simply states that the local intensities of motion in an isolated system are continuously balanced
with the progress of time on scales which are not too small. Together with the conservation
of energy, this means that the local intensity of motion fluctuates spatially around a globally
constant mean value and finally approaches this mean value.
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As said, there are now beside the spatial fluctuations of the particle energy also those of the
particle density (or the particle volume), which are connected likewise with a form of the entropy,
which I would like to call density entropy in the following in contrast to the motion entropy.
Intuitively, it can be assumed that the temporal monotonicity applies equally to the density
entropy, if not, then to the sum of both entropies. Analogous to the entropy of motion, the
density entropy is a measure for the averaged agreement of the local densities with the global
density mean value, which reaches its maximum exactly in the case of the global equality of all
local densities.

On the other hand, the primacy of the entropy of motion with respect to monotonicity is not
accidental. For if, as said, it is to be assumed that also the density entropy does not decrease
in an isolated system, then the balancing process of the motion entropy, which we call heat
diffusion, is generally present and clearly perceptible, while the balancing process of the density
entropy, which we call particle diffusion or simply diffusion, is clearly restricted by the existence
especially of solids. In other words, particle diffusion is restricted and the heat diffusion tran-
scends boundaries, which can be seen in a simple experiment in which two bodies of the same
mass elastically interact with each other:

Body 1 Body 2

Impulses before
collision:

→ ←

Impulses after collision: ← →

Table 3.1: Elastic collision of two bodies

The bodies indicated by arrows in table 3.1 limit each other in the continuation of their local
state by the repulsive force existing between them, but not in the continuation of their state of
motion. Rather, their respective momentum continues unhindered in the respective other body
after the impact in space. And one can even go one step further and put the surface radiation of
solid bodies into the context of the trans-boundary momentum continuation, because the emitted
radiation takes over the outward directed momentum of the peripheral particles and carries it also
beyond the boundary of the periphery of the solid body, which leads to the theory that also, and
especially, solid bodies have to radiate for the sake of their stability, because otherwise peripheral
particles would detach with higher probability and as a consequence weaken the stability of the
solid body.

3.3 Namespace complexity

3.3.1 Finite ordered name spaces

The goal of this section is to deepen the principle of abstract differentiation established in the
last section, which is shown in Boltzmann’s formula 1.2 for entropy. Let therefore be given an
(abstract) set with N pairwise distinguishable elements. Each element is uniquely represented by
a name, i.e. the name assignment defines a bijective mapping of the set to the set of names. The
only requirement for the names is that they are pairwise distinguishable just like the elements
themselves. The mapping, but also the set of names itself, is to be called namespace. The
question arises for the most effective namespaces with the shortest names, and it is immediately
postulated that number systems form models of effective namespaces. Without justification it
is further assumed that for large namespaces the efficiency is independent of the base b of the
number system.
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The name assignment therefore consists in the fact that the elements of the set are numbered,
whereby at the same time the order of the natural numbers is put on the set. The length of
the name, which is also called name complexity, is equivalent to the number of digits without
consideration of leading zeros. By looking at number systems it becomes clear that namespaces
always have short and long names. To examine the total length Lb of such a namespace with
N = bn names, i.e. the sum of all name lengths, it can be noted that for a given name length i
there are exactly

(b− 1)bi−1 (3.1)

numbers ̸= 0 with this name length, namely (b − 1) digits ̸= 0 at position i and in each case
exactly b digits at the remaining (i − 1) positions, so that for the sum of all name lengths and
thus the complexity of the whole name space applies:

Lb =
∑

1≤i≤n

i(b− 1)bi−1

= (b− 1)
∑

1≤j≤n

∑
j≤i≤n

bi−1

= (b− 1)
∑

1≤j≤n

 ∑
j≤i≤n

bi−1 −
∑

1≤k≤j−1

bk−1


= (b− 1)

∑
1≤j≤n

[
1

b− 1
(bn − 1)− 1

b− 1
(bj−1 − 1)

]
=
∑

1≤j≤n

(bn − bj−1)

= nbn − 1

b− 1
(bn − 1)

With n = logb(N) we get3

Lb = N logb(N)− 1

b− 1
(N − 1) (3.2)

and, if N is sufficiently large, for the mean name length:

Lb

N
≈ logb(N) (3.3)

Thus, the averaged name length is exactly the same as the length of the longest name, which
illustrates the small proportion of short names that omit leading zeros in a large namespace.

In summary, the complexity of a large namespace of N names is equal to N log(N) and the
average complexity is equal to log(N). Within such a namespace – with fixed size – the distinction
between short and long names is meaningless with respect to the overall complexity.

3Cf. the following result for Lb with the later defined entropy function x 7→ x log(x)− (x− 1), shown in figure
7.1
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Furthermore, in the number system of base b for number m containing i digits

bi−1 ≤ m < bi

holds and thus also:
i− 1 ≤ logb(m) < i

Because even i− 1 < logb(m) holds for almost all numbers m with i digits, we get:

∑
1≤i≤n

(i− 1)(b− 1)bi−1 <
bn−1∑
m=1

logb(m) <
∑

1≤i≤n

i(b− 1)bi−1 = Lb

Because for the expression on the left side

∑
1≤i≤n

(i−1)(b−1)bi−1 = Lb−(b−1)
∑

1≤i≤n

bi−1 = Lb+1−bn = 1+N(logb(N)−1)− 1

b− 1
(N−1)

applies, we arrive at

1 +N [logb(N)− 1]− 1

b− 1
(N − 1) <

bn−1∑
m=1

logb(m) < N logb(m) < N logb(N)− 1

b− 1
(N − 1)

and thus for large N

logb(N !) =

N∑
m=1

logb(m) ≈ N logb(N) (3.4)

which also results from the much more accurate Stirling formula:

N ! =
√
2πN

N+
1

2 e−n

3.3.2 Structured Finite Namespaces and the Shannon Entropy

The finite set M, which is represented by a namespace and contains N elements, may now be
decomposed into subsets (equivalence classes) with n1,n2,n3... elements, such that∑

i

ni = N

holds. The subsets may each be represented by their own (local) namespaces with complexities
ni log(ni) and the original global namespace may be replaced by a structured namespace based
on the local names. The global name of an element is then composed of, for example, a global
prefix of length [log(N) − log(ni)] (as the name for the respective subset) and the local name
of length log(ni) for the distinction within the subset. Thus, the total name length [log(N) −
log(ni)] + log(ni) = log(N) of an element remains unchanged, and the global complexity of all
elements of a subset is:

ni[log(N)− log(ni)] + ni log(ni)
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Note: The subset name with representation cost log(N)− log(ni) = log(N/ni) is short for large
subsets and long for small subsets, corresponding to a temporal interpretation according to which
division into subsets does not affect the efficiency of global names, i.e., frequently used prefixes
are short, rarely used ones are long.

If we sum up the global components of the names, the prefixes of length [log(N)− log(ni)], over
all elements of the setM, we get

∑
i

ni[log(N)− log(ni)] = −N
∑
i

ni
N

log
(ni
N

)
= −N

∑
i

pi log(pi) (3.5)

with the relative sizes or probabilities:

pi =
ni
N

(3.6)

By construction, therefore, vice versa also

−N
∑
i

pi log(pi) = N log(N)−
∑
i

ni log(ni) (3.7)

holds along with the following interpretation:

Global complexity: From the global perspective, there is first a globally valid namespace with
N names, corresponding to the N elements of the setM to be distinguished. According to
Eqn. 3.3, the complexity of the namespace is equal toN log(N). If the setM is decomposed
into classes, each with ni elements, their own local namespaces, and local complexities
ni log(ni), then −N

∑
i pi log(pi) is the global complexity for globally distinguishing the

local namespaces.

Globalization complexity: From a local perspective, a namespace with n names has complex-
ity n log(n). If, from a global perspective, there are a number of such namespaces, each
with ni own names and complexities ni log(ni), then a common global namespace can be
formed based on these local namespaces for all

∑
ni elements at once. Merging the local

namespaces into the global namespace requires the additional complexity −N
∑

i pi log(pi),
which cannot be assigned to one or part of the local namespaces, but only to all of them
in common, and which is therefore the global complexity of merging the local namespaces
into a global namespace and thus the effort of globalization.

Finally, the globalization complexity −N
∑

i pi log(pi), after division by N , yields the average
globalization complexity, which is consistent with Shannon entropy:

−
∑
i

pi log(pi) (3.8)

(Cf. Gibbs entropy4 and entropie in information theorie5)

For further interpretation of the abstract expression 3.8 it is essential to note how increase and
decrease of its value can be completely analyzed already from the mutual magnitude relation of
only two probabilities pj und pk, because as long as the sum pj + pk of the two probabilities
is constant, also all other probabilities can remain unchanged. I.e. the total complexity breaks
down into two parts

4https://en.wikipedia.org/wiki/Entropy_(statistical_thermodynamics)#Gibbs_entropy_formula
5https://en.wikipedia.org/wiki/Entropy_(information_theory)

https://en.wikipedia.org/wiki/Entropy_(statistical_thermodynamics)#Gibbs_entropy_formula
https://en.wikipedia.org/wiki/Entropy_(information_theory)
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−
∑
i

pi log(pi) = −
∑
i ̸=j,k

pi log(pi) + [−pj log(pj)− pk log(pk)]

with the constant residual −
∑

i ̸=j,k pi log(pi) and the variable part −pj log(pj)− pk log(pk) sub-
ject only to the constraint pj + pk = const. Thus, let pi = p+ ξ and pk = p− ξ with constant p
and variable ξ, then the summed complexity part of these two probabilities is equal to

−(p− ξ) log(p− ξ)− (p+ ξ) log(p+ ξ) (3.9)

The derivative of this function as a function of ξ gives the expression

log

(
p− ξ
p+ ξ

)
= log(pk)− log(pi)

which is positive for −p < ξ < 0 and negative for 0 < ξ < p, so that 3.9 rises and falls
monotonically, respectively, and thus reaches its maximum at ξ = 0 and its minimum at ξ = ±p
(with the continuous closure x log(x) → 0 for x → 0)). For the two probabilities pi and pk this
means that the sum of their complexity components increases as long as they move towards each
other, that it is maximal when both have the same magnitude and minimal when one of the two
probabilities vanishes in favor of the other.

The following graphs show the Shannon entropy according to 3.9 for the natural logarithm:

Figure 3.1: Shannon entropy according to Eqn. 3.9 for p = 0.5
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Figure 3.2: Shannon entropy according to Eqn. 3.9 for p = 0.01

It also follows from what has been said that for a fixed number of equivalence classes, i.e., a
given number n of probabilities pi, the complexity is maximum if all probabilities have the same
size 1/n, so that for the maximum at n probabilities we get:

−
n∑

i=1

pi log(pi) ≤ −
n∑

i=1

1

n
log

(
1

n

)
= log(n) (3.10)

The same result is given by Jensen’s inequality 3.30. From it follows, because the logarithm is a
concave function:

−
n∑

i=1

pi log(pi) =
n∑

i=1

pi log

(
1

pi

)
≤ log

(
n∑

i=1

pi
1

pi

)
= log(n)

In this inequality, according to section 3.4.2, equality holds exactly when all pi are equal, i.e.,
exactly in the case of uniform distribution.

By construction in Eq. 3.5, Shannon entropy is non-negative. This also follows from Jensen’s
inequality, this time because of the convexity of the negative logarithm:

∑
i

pi(− log(pi)) ≥ − log

(∑
i

p2i

)
≥ − log

(∑
i

pi

)
= 0 (3.11)

In addition to the interpretation given in 3.3.2 as globalization complexity, Shannon complexity
can also be interpreted in the following ways:

Representation effort: Since − log(pi) = log(N/ni) is the representational effort of the i.th
equivalence class and therefore pi(− log(pi)) is the weighted effort, −

∑
i pi log(pi) is the

weighted cumulative effort.

Measure of dissolution and structural decay: When an equivalence class decomposes into
two classes so that the elements of each become distinguishable, Shannon entropy grows.

Smoothing measure: The total share of two equivalence classes in the Shannon entropy grows
when their sizes converge until it reaches its maximum in the case of equality of both.



48 CHAPTER 3. FUNDAMENTALS OF ENTROPY

Especially in the case of a fixed number of equivalence classes it can be interpreted as a
smoothing measure. It measures the extent of equal distribution.

Propagation or size measure: If an initially ignored equivalence class is to be considered after
all, i.e. its probability grows from zero to a value greater than zero, then this can only be
at the expense of the probabilities of other classes with the consequence that the Shannon
entropy increases. Such a process can be interpreted both in the sense of a spreading and
in the sense of a growth, the process of smoothing finally as its gradual completion. In
fact, dissolution, propagation and growth processes are not distinguished from each other
by Shannon entropy. Unlike smoothing, in all three cases the respective process is reflected
in the enlargement of the probability distribution.

Temporal complexity: If the elements of the set are not interpreted spatially but temporally
or spatio-temporally, namely as possible events of an event space e.g. in the form of states
of a state space with probabilities of occurrence pi, then the Shannon entropy can be
understood as that amount of information for a system which would be needed on average
to predict the respective next event of the system or e.g. to know the current state of
the system. If the information is not available, its quantity is a measure of the lack of
knowledge about the current state.

Feature diversity: If one considers the elements of an equivalence class as bearers of a class-
specific feature (which is the basis of the division into equivalence classes in the first place,
if the equivalence relation is defined via the features, i.e. two elements are equivalent,
indistinguishable or without distinctive relevance exactly if they share the same feature),
then the complexity is a measure for the feature diversity of the system.

Finally, another significant property of Shannon entropy becomes apparent:

Equality of intensive and extensive complexity: Shannon entropy cannot distinguish be-
tween extensive expansion and intensive dissolution processes, because it only has the
abstract probabilities. I.e. it increases equally and even indiscriminately by expansion out-
ward as by dissolution inward. Therefore, it is not an extensive measure of size, as section
3.5.2 shows.

3.3.3 Complexity in partition hierarchies and locality

Generalization of Shannon entropy

Each of the equivalence classes of the previous section can in turn be decomposed into equivalence
classes, just as the setM can. Let pi be first the relative size of the equivalence classMi ⊂M
and then let pij with

∑
j pij = 1 be the relative sizes of their own equivalence classesMij ⊂Mi.

These are also equivalence classes in M with relative magnitudes pipij , and relative to M
their cumulative contribution to entropy is equal to −

∑
j pipij log(pipij), for which, due to the

additivity log(pipij) = log(pi)+log(pij) of the logarithm, the following global-local relation holds:

−pi log pi + pi

−∑
j

pij log(pij)

 = −
∑
j

pipij log(pipij)

The cumulative part −
∑

j pipij log(pipij) of all subsets Mij of Mi in relation to M is thus
identical to a sum, which consists of the entropy part −pi log pi of the undivided set Mi in
relation toM and the pi weighted entropy of the setMi itself, which is a local entropy.

If all equivalence classes Mi of M are decomposed in this way, then for the global, i.e., total
entropy S holds:
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S =
∑
ij

pipij log(pipij) = −
∑
i

pi log pi +
∑
i

pi

−∑
j

pij log(pij)

 (3.12)

The described two-level decomposition into equivalence classes is a decomposition hierarchy,
which we also call division or partitioning hierarchy, which already starts withM itself, which is
the root of the hierarchy, which also forms the 0-th level of the hierarchy or, in another word, its
0-th scale. The equivalence classes Mi of the first division together form the first scale and the
classes Mij of the second division form the second scale. Now there are in principle no limits
to the further recursive continuation of the division. The global-local relationship of Eqn. 3.12
is then – via mathematical induction – extended to the following relationship that is valid for
arbitrary partition hierarchies:

S =
∑
i

pi

− log(pi) +
∑
j

pij

(
− log(pij) +

∑
k

pijk (− log(pijk) + . . . )

) (3.13)

= −
∑
i

pi log(pi)−
∑
ij

pipij log(pij)−
∑
ijk

pipijpijk log(pijk)− . . . (3.14)

= −
∑
ijk···

pipijpijk · · · log(pipijpijk · · · ) (3.15)

What we have called above the global-local relationship is the reflection of a connection among the
formed equivalence classes, which is reflected in general form in the equations 3.13 and 3.15. The
connection is that each class, e.g., the classMijk, is not merely equivalence class of its immediate
parent class Mij , from which it emerges by division. Rather, the set of all equivalence classes
defined at each scale, initially only locally, always also forms a global decomposition of M. I.e.
for the classesMijk, e.g., of the third scale, by definition initially only holds:

∀ij : (k ̸= k
′ ⇒Mijk ∩Mijk′ = ∅) ∧

⋃
k

Mijk =Mij

However, it is true – without proof – as well:

((i, j, k) ̸= (i
′
, j

′
, k

′
)⇒Mijk ∩Mi′j′k′ = ∅) ∧

⋃
ijk

Mijk =M

Thus, the deep partitioning hierarchy always defines also a hierarchy with only two scales, namely
the 0-th scale consisting only of the set M, and a first scale which I call the (implicit) flat
decomposition. Now this relation is reflected in that of the two equations 3.13 and 3.15 for the
Shannon entropy. This gives rise to the following possibility:

For a partitioning hierarchy with possibly infinitely many scales, the incremental characteristic
of the Shannon entropy as a function of scale can also be studied on the simplified basis of a
hierarchy of only two scales according to Eq. 3.12. I.e., actually the Shannon entropy of each
two scales n and n + 1 would need to be calculated according to Eq. 3.13 to finally find the
difference of the two results. Instead, one can also resolve the hierarchy up to and including scale
n into its flat partitioning and then consider the change in entropy that results from dividing
the equivalence classes of this flat partitioning. The following sections give examples of this.
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Scale-dependent growth of Shannon entropy

Let S(n) be the Shannon entropy for a partitioning hierarchy as a function of scale n. Then
holds:

∆S(n) := S(n)− S(n− 1) ≥ 0 (3.16)

The Shannon entropy thus grows monotonically as a function of scale. The proof of this fol-
lows directly from Eq. 3.12, because S(n) = −

∑
i pi log pi is the entropy of the implicit flat

partitioning, and therefore

∆S(n) = S(n)− S(n− 1) =
∑
i

pi

−∑
j

pij log(pij)

 (3.17)

holds such that ∆S(n) equals an average of local non-negative Shannon entropies and is therefore
itself non-negative.

Thus, one can also already say that the entropy increase ∆S(n) at each scale is of the same order
of magnitude as the division entropies −

∑
j pij log(pij) of the divided equivalence classesMi.

Infinite growth with bi-partitioning

The point of this section is to determine, since Shannon entropy grows monotonically, whether
its growth can be bounded and under what circumstances. From Eqn. 3.10 it follows that it
grows logarithmically as a function of the number of equivalence classes in the case of uniform
distribution and thus – in this case – also infinitely. In this section we only consider recursively
bi-partitioned sets, because such bi-partitioning is characterized by particular simplicity and
symmetry. Let, then, be given a binary partitioning hierarchy in which the recursive division of
equivalence classes divides each in turn into exactly two classes, so that the hierarchy corresponds
to a binary tree. The above equation then yields the following equation for ∆S(n):

∆S(n) =
∑
i

pi(−pi1 log(pi1)− pi2 log(pi2)) (3.18)

So we investigate – as already following the definition 3.8 of Shannon entropy – the entropy
change on the basis of bipartitions. Now, in principle, we can already state that the restriction
to bipartitions does not imply any loss of generality, because any other – at least finite – division
can be obtained by bipartitions carried out in succession.

Because ∆S(n) according to Eqn. 3.18 is the simple average of the local two-part entropies
∆Si = −pi1 log(pi1)−pi2 log(pi2), it suffices to study these entropies, which we can now represent
– as in the expression 3.9 – because of pi1 + pi2 = 1 with the fixed value p = 1/2 as follows:

∆Si = −pi1 log(pi1)− pi2 log(pi2) (3.19)

= −
(
1

2
− ξ
)
log

(
1

2
− ξ
)
−
(
1

2
+ ξ

)
log

(
1

2
+ ξ

)
(3.20)

= log(2)− 1

2
((1− 2ξ) log(1− 2ξ) + (1 + 2ξ) log(1 + 2ξ)) (3.21)

The function of the expression in Eqn. 3.20 as a function of x is already represented by figure
3.1 – and again by the following figure, this time together with its derivative



3.3. NAMESPACE COMPLEXITY 51

log

(
1− 2ξ

1 + 2ξ

)
(3.22)

in green color:

Figure 3.3: Entropy increment ∆Si (yellow) together with its derivative (green) according to
3.22

The maximum of ∆Si = log(2) is reached at ξ = 0, which corresponds to the case of equal sizes
pi1 = pi2 = 1/2 and, insofar as true for all divisions on all scales, to the uniform distribution,
which we already know leads to infinite growth. Here we can see this from the fact that according
to Eqn. 3.18 then also for the total entropy growth at each scale

∆S(n) =
∑
i

pi log(2) = log(2)

applies, so that the entropy summed over the scales

S(n) =
n∑

i=1

∆S(i) = n log(2)



52 CHAPTER 3. FUNDAMENTALS OF ENTROPY

grows linearly as a function of scale n (which is equivalent to logarithmic growth under uniform
distribution according to Eqn. 3.10). So

lim
n→∞

S(n) = log(2) lim
n→∞

n =∞

holds and hence the growth of entropy is unbounded.

Now one can see from the yellow drawn graph for ∆Si in the figure above that nothing changes
significantly in the growth if one gives up the strict uniform distribution in favor of possible
unequal distributions ξ ̸= 0, as long as these do not really approach the perfect inequality
distribution with ξ = 1/2 and ξ = −1/2, because then ∆Si and thus also the averaged entropy
growth ∆S(n) for each scale is indeed smaller than log(2). But as long as these have downward
bounded values, the entropy S(n) nevertheless grows infinitely with increasing scale n. Now
obviously exactly this is difficult, to get arbitrarily close to the abscissa on the yellow graph
above and at the same time to keep sufficient distance from the edges ξ = ±1/2, which is further
complicated by the diverging derivative at these two locations.

Finally, an exact estimate is needed so that with a small ϵ > 0 we set a lower and upper bound

−1

2
+ ϵ < ξ <

1

2
− ϵ

for the inequality distribution measure ξ, which is equivalent to:

1

2
+ ξ > ϵ ∧ 1

2
− ξ > ϵ

Since we assume that ϵ is in a small neighborhood of 0, and the function ξ → −ξ log(ξ) is strictly
monotonically increasing there, as is also shown in the figure 3.4 below, it follows from Eq. 3.20
together with the last two relations

∆Si ≥ ∆Smin := −2ϵ log(ϵ) (3.23)

and thus, as already above for the uniform distribution, first ∆S(n) ≥ −2ϵ log(ϵ) and then

S(n) ≥ −2nϵ log(ϵ) (3.24)

and from it finally:

S = lim
n→∞

S(n) ≥ lim
n→∞

−2ϵ log(ϵ)n = −2ϵ log(ϵ) · lim
n→∞

n =∞ (3.25)

Thus, it is clear that entropy grows infinitely with scale when ϵ > 0 is a fixed finite value. To
proceed, let us first specify the objective. It consists in,

• to exclude the perfect relative non-uniform distribution with which one of the quantities pi1
or pi2 equals zero and the other equals 1 and thus the entropy increase ∆Si = 0 vanishes,
and

• nevertheless limit the entropy growth as a function of scale.

The perfect non-uniform distribution is nothing else than an improper division of the set Mi

into the empty set and the improper subsetMi ⊆Mi. Now, if the goal is really to exclude only
this case, then, however, any fixed value ϵ > 0 is more than actually necessary for achieving this
goal, because any smaller value corresponds better to the goal. Therefore, one can try to replace
the fixed value by an infinitesimal defined by a weakly decreasing zero sequence. Accordingly let
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ϵ := ϵ1, ϵ2, ϵ3 · · · (3.26)

be a strictly monotonous but weakly decreasing zero sequence. More precisely:

(∀n ∈ N : ϵn+1 < ϵn) ∧
(
lim
n→∞

ϵn = 0
)
∧
(
lim
n→∞

ϵn · n =∞
)

(3.27)

In this definition, we connect n to the scale of the partitioning hierarchy in the sense that the
limits limn→∞ S(n) and limn→∞ ϵn are taken together. The terms ϵn, like ϵ and ξ, have the
meaning of a relative share of an equivalence class, which in the case of the infinitesimal we
expect to represent a share smaller than any ϵ > 0. On the other hand, we need a criterion to
sufficiently delimit its value from 0, since we want to exclude ϵ = 0 and the associated improper
division according to the above. For this we choose the scale limit limn→∞ 1/n = 0, which defines
the value of 0 in the continuum to first order. With respect to this definition, the third condition
limn→∞ ϵn ·n =∞ in 3.27 then has the meaning of said demarcation, which is valid on all scales.

Accordingly, 3.25 becomes:

S = lim
n→∞

S(n) ≥ 2 lim
n→∞

nϵn · (− log(ϵn)) =∞ (3.28)

The limit is infinite, since the values nϵn and − log(ϵn) each grow infinitely according to the
definition of the infinitesimal.

In summary, we can conclude that the Shannon entropy for an infinite binary partitioning hi-
erarchy is infinite even when partitioning into subsets of even infinitesimal relative size only is
allowed.

Infinite growth in the general case

For the general case, we again take from Eqn. 3.17 that for the entropy increase ∆S(n) on a
scale

∆S(n) =
∑
i

pi∆Si

with ∆Si = −
∑

j pij log(pij) holds. Thus, the summands of ∆Si all have the form of the entropy
function ξ 7→ −ξ log(ξ), which the following figure shows together with its derivative.

Figure 3.4: Graph of the function ξ 7→ −ξ log(ξ) (yellow) with its derivative (green)
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At least one of the summands has the smallest size pij ≤ 1/2, so that its entropy −pij log(pij)
is determined by the function values in the left part of the domain of the entropy function.
Therefore, there is also at least one summand whose magnitude – except for the factor 2 – is
subject to the same estimation as that for ∆Si of the two-part system according to Eqn. 3.23.
Since this summand is the smallest, it follows

∆Si ≥ −ϵ log(ϵ)

again with a lower bound ϵ for the quantities pij to exclude the case Mij = ∅. Everything else
follows as in the estimation for the two-part system, so that Shannon entropy is not bounded
also in the case of general hierarchy partitioning, even if almost improper partitions based on an
infinitesimal are permitted.

3.3.4 Complexity as a cost function and gradual distinctiveness

Difference, ratio, relative and logarithmic difference

For two natural numbers m and n the following holds:

m = n⇔ m− n = 0

The arithmetic difference m − n thus allows to check the equality of two natural numbers.
However, it goes beyond the mere identity check and even allows the determination of a gradual
difference. This difference is independent of the absolute magnitudes of the numbers, independent
therefore of where in the ordered set of the Natural Numbers both have their place in relation
to the reference point, the zero, or some other third point. The most important and at the same
time most elementary difference is that between a number n and its predecessor n − 1 or vice
versa between n and its successor m := n+1. Thus the difference allows the test of the successor
relation of the natural numbers:

m = n+ 1⇔ m− n = 1

In a similar way – as above for the difference – holds for the ratio if n ̸= 0:

m = n⇔ m

n
= 1

So also the relation m/n allows the test of equality and likewise goes beyond the mere identity
test by allowing the determination of a gradual difference. In contrast to the difference, however,
in the ratio the absolute quantity, i.e. their respective relation to the reference point, the zero,
can be mirrored, and increasingly so, if their difference is small, but not equal to zero, which in
turn applies in particular to a number n and its successor n+ 1:

n+ 1

n
= 1 +

1

n

The difference of two neighbors measured by the ratio is thus the smaller, the larger they are,
i.e. the larger their difference to zero is. In general, if the difference between m and n is not
large in relation to n in any case, the ratio m/n actually expresses a relation between the three
numbers 0, n,m.

Third, the relative difference connects the difference m− n with the ratio m/n:

m− n
n

=
m

n
− 1

For it, instead of the above equivalence, holds:

m = n⇔ m

n
− 1
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The logarithmic difference connects the ratio with the difference in a special way:

log(m)− log(n) = log
(m
n

)
For large numbers m,n with relatively small difference m−n, so that x := m/n ≈ 1, the relative
and the logarithmic difference have similar characteristics, which can be seen in the graphs of
the two functions x 7→ log(x) (yellow) and x 7→ x− 1 (green) in the neighborhood of x = 1:

Figure 3.5: Verwandtschaft der relativen und logarithmischen Differenz

Both differences can be understood as a gradual measure of the distinguishability of two numbers
m and n, or of the distinguishability of the finite sets {0, 1, 2, ...m} and {0, 1, 2, ...n} represented
by the numbers m and n. Both differences can take positive as well as negative values, negative
values if the ratio of the numbers is reversed and m/n > 1 becomes m/n < 1. However, it is
precisely in this case that the logarithmic difference is distinguished from the relative difference
by symmetry, which is more precisely an anti-symmetry. Because, if the numbers are exchanged
as in m→ m

′
= n and n→ n

′
= m, we get

m

n
− 1→ m

′

n′ =
n

m
− 1

but:
log(m)− log(n)→ log(m

′
)− log(n

′
) = log(n)− log(m) = −(log(m)− log(n))

So in both cases there is a sign change. The logarithmic difference, however, performs the
exchange completely symmetrically beyond this, as is also shown by the two graphs in Figure
3.5, because the relative ratio is constrained below for ratios x ≤ 1, namely by −1, but not for
ratios x > 1. The logarithmic difference, on the other hand, is equally unbounded in both cases.

Complexity and gradual distinctiveness

The meaning of gradual distinguishability is revealed by the count

1, 2, 3 · · ·Many

which is real and lived everyday life. Many is the vestibule of infinity, whose striking feature is
perspectival indistinguishability or the – perhaps supposed – lack of need for distinction.
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At the end of the section 3.3.1 on finite ordered namespaces, the observation was made that for
sets of fixed size N the distinction between short and long names is meaningless and instead
all names can be assigned the same, average complexity log(N). For infinitely growing sets or
infinite sets like the natural and integer numbers, however, the exact assignment of complexity
to subsets or the elements themselves is mandatory:

More precisely, in the sense of section 3.3.1, complexity is the consequence of the simple binary
pairwise distinction (yes or no) of elements of a finite set based on a number system.

Now also the natural numbers themselves arise on the basis of simple binary distinction,6 which
are characterized by a global asymmetry, namely the asymmetry of order and for instance the
asymmetry between finite and infinite part.7 This asymmetry is also revealed in its representation
by number systems in the form of complexity. According to it, each section 0, 1, 2 · · ·n of the
natural numbers has the (average) complexity log(n), so that sections of different length are
evaluated differently by complexity. It is essential that the complexity increase is perspectival
and takes place in relation to a reference point, zero, but that it is compelling if the perspective
(reference point) remains the same and that every change of perspective does not change anything
globally.

Obviously, this gradual increase of complexity is connected with the gradual decrease of either
the distinguishability or the necessity to distinguish. Thus, the gradual measure of complexity
is contrasted with the gradual measure of distinctness or need for distinctness for two numbers
m and n. Intuitively, therefore, the most important requirement for such a measure is that for
large numbers m,n with small difference m − n it also be small, which is satisfied in the same
way by the relative difference as well as the logarithmic difference. However, the asymmetry of
the relative difference disqualifies it for a measure of distinctness for arbitrary numbers m and
n, while the logarithmic difference combines the properties of the arithmetic difference m − n
and the ratio m/n and is probably therefore the ideal measure of distinctness. For ratio values
m/n clearly beyond one, the focus of their meaning is rather that of relative complexity, for ratio
values in the vicinity of one it is rather the distinctness.

A comparison with Eqn. 3.29 of the following section shows that gradual distinctness is a special
case of the complexity log(∆x/∆xR) of the continuum. This too is a relative measure, defining
the complexity of ∆x relative to the reference ∆xR. And even the originally defined complexity
log(m) is a special case of gradual distinctness with n = 1, so any complexity is relative, including
the complexity log(m).

Finally, the necessity of distinction is the other side of gradual distinctness. The use of the
indefinite number word many, for example, implies that the exact specification of the number is
not ascertainable because of its size or – conditioned by the context – not necessary. What may
be the case in everyday life with already rather small numbers is in mathematics the definition
of the limit

lim
n→∞

n

which is reached when continuing implies no difference. The prototype of this limit leads to
indistinguishability of adjacent numbers n and n+ 1 with limit

lim
n→∞

log

(
n+ 1

n

)
= 0

According to this, the infinite is the space
6This becomes very clear in the second volume about the continuum and therein about the Natural Numbers

and individual distinctness
7Here, too, reference can be made to the second volume on the continuum therein to the chapter on extensive

infinite space
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• in which the distinction of neighboring elements or the size of the sets represented by them
is not possible

• or – in the respective context – makes no difference

· · · and into which, depending on the context, the transition is gradual and to which complexity
sets a soft boundary.

Complexity as a cost function

The soft boundary mentioned in the last sentence of the last section suggests that complexity
involves a further interpretation. First, complexity is the consequence of the simple binary
distinction, as the last section also points out, and leads immediately to the notion of gradual
distinctiveness. Complexity itself as well as distinctness both lead to this interpretation, in which
complexity is the universal basis of every cost function, which does not set a rigid, but just a
soft boundary for the transition to large numbers, which is shown in particular in the decreasing
perspective distinctness of the basically binary distinguishable elements of a set, as the natural
numbers and the extensive space are.

3.4 Complexity of the continuum

3.4.1 The infinity of the continuum and negative complexity

In a certain way the infinity in the continuum is real in contrast to the extensive infinity of the
Natural Numbers, which, one could say e.g. in the shape of the size of the universe is far away
and – possibly – has only little importance for the respective local reality. In contrast to this,
the intensive infinity of the continuum is local, i.e. not even only in immediate neighborhood,
but in the center of all physical being, however large or small this being may be, mathematically
expressed for instance by a local environment in space. The complexity of such an environment
with all its numbers contained in it is always infinite, even if the environment is restricted to
rational numbers. In the case of irrational numbers already the complexity of only a single
number is infinite, because its description length is infinite, namely that of an infinite sequence
or series.

Now there are obviously two ways to approach the complexity of the continuum. On the one
hand, the Shannon entropy offers itself for the time being as a measure of intensive and extensive
complexity8. For the most essential feature of the continuum is that it sets no limits to dissolution,
i.e., to continued division. This essential feature, or rather the measure of this feature, is reflected
by Shannon entropy −

∑
i pi log pi in an exemplary way, insofar as, although one starts from a

finite namespace of a setM with finitely many N elements of section 3.3.2, this can be extended
indefinitely by the generation of local namespaces during continued division, insofar as division
leads to no end. The continuing division process would thus be accompanied by the continuing
extension of the namespace, which may be necessary for physical reasons, for example, if a particle
cannot be uniquely assigned to a spatial environment (cell), i.e., if the classical infinitesimal mass
point must give way to the particle of modern physics with extended propagation in space. Now
this characteristic of Shannon entropy is both a curse and a blessing. On the one hand it is the
perfect measure of resolution, on the other hand it does not converge in the case of indefinitely
continued division, as shown in section 3.3.3.

Now, at the heart of Shannon entropy is the indistinguishability of the elements within each of
the equivalence classes. As described, as the equivalence classes become smaller by resolution, the
complexity increases because the overall global distinguishability of the elements increases. Let

8Cf. section 3.5.2 on the intensity of Shannon entropy
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us assume that we want to distinguish matter increasingly better on the basis of its assignment
to space (cells of space) by decreasing the size of the cells, in order to describe the physical state
increasingly better, as it is already described in the introduction. Then, according to what has
been said above, in this reduction process the Shannon entropy of matter grows infinitely, if
matter can be divided infinitely, as modern physics claims.

On the other hand, however, the complexity of the spatial continuum is to be considered in itself,
i.e. independently of its interweaving with matter. The complexity introduced in section 3.3.1 is
nothing else than the complexity of the discrete space. In other words, the discrete mathematical-
physical space is the natural realization of a namespace as introduced in that chapter, a set
namely with a focus on the abstract distinction of its elements. In the following, space itself
is considered as a namespace, which thus exclusively serves the purpose of the mere distinction
of its elements themselves and everything what stands in a relation with these elements, thus
for instance matter. The relation between this namespace and the anthropogenically created
namespace of numbers will be treated in the following chapters. Two important results of these
chapters are two perspective dependencies, on the one hand the choice of the reference point,
zero, and on the other hand the choice of the reference scale or – equivalently – of a unit of
length. The one as well as the other choice is on the one hand necessary, on the other hand it
breaks the symmetry of space. The importance of the zero shows up in a particularly striking
way in the Peano axioms, under which the zero axiom makes the zero an element distinguished
from all other elements by the fact that it is the only element which has no predecessor under
the successor mapping n→ n+1. The resulting symmetry breaking is global, manifesting itself,
among other things – from the perspective of each element n – in the distinction of a finite (≤ n)
and an infinite part (≥ n) of the natural numbers. It is due to this perspective distortion that
complexity, as defined in section 3.3, also divides space into complex and less complex parts,
which gives rise to the phenomenon of complexity in the first place. At the same time, the
elements of discrete space thus distinguished are not abstract elements, not even points of space,
but extended cells of space, which in turn can be subdivided, that is, resolved. In connection
with this is the second symmetry breaking as a result of the determination of a reference scale
together with a unit of length and thus the determination of the cell volume. Namely, the
symmetry of space is broken by highlighting the cell edges, which are necessary for the definition
of the cells, and which are related to the cell volume. The space symmetry is satisfied only by
continued division of the cells into smaller rational cells up to real indivisible points of the space.
The meaning of the rational and in particular of the irrational numbers is therefore in the end
the clearing up of the arbitrary symmetry breaking of the continuous space which is inevitably
connected with the natural numbers and every fixed scale.

Let us now assume that, for example, the one-dimensional space, the number line, is decomposed
into unit cells of the same size, the reference quantity u. Then neighboring unit cells can in turn
be grouped into cell clusters, a neighborhood. Depending on the size of a neighborhood, which
is measured by the number n of its cells, it has the local mean complexity log(n) – based on
the fixed size u, according to Eq. 3.3. Now, the possibility of forming such neighborhoods to
larger complexes is one side of space, including the discrete space consisting of cells. But the
other side of the continuum is now the possibility of division of cells, including unit cells, and
the question arises of the complexity of a part of a unit cell. If now the summary of n unit cells
has the complexity log(n) and thus a single cell has the complexity log(1) = 0, then a cell part
of the relative size p ≤ 1 must have the complexity log(p) ≤ 0, as far as one wants to ascribe
a complexity to a cell part at all. But on the other hand this is necessary, because no cell is
basically distinguished from others in the continuum. One could also have declared pu the other
way round as the reference quantity. The original unit cell would then be composed of 1/p new
unit cells and would accordingly have the complexity log(1/p) = − log(p) > 0. The new unit
cell, on the other hand, would have complexity 0.
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In the continuum, complexity is therefore necessarily relative and – as has already been mentioned
and will show again – not only in the continuum. And therefore the definition of a reference
quantity or a reference scale is a prerequisite for the existence of complexity at all. And for the
complexity of importance are also only relative quantities like the quantity p used above. I.e.
the complexity of any cell of size ∆x with respect to the unit cell of size u is:

log

(
∆x

u

)
(3.29)

One can also interpret the change of complexity from positive to negative values as the change
from extensive to intensive complexity of the space, likewise as a change from the interior to the
exterior view. Here the perspective is always that of the unit cell. If the unit cell is part of a
larger cell, then this is viewed from the inside. If, on the other hand, the unit cell surrounds a
smaller cell, the latter is viewed from the outside.

The necessity of the reference to a unit of magnitude has its reason in the scale symmetry
of the continuum which distinguishes no scale before other scales. I.e. the continuous space
determines in the scale space as little as in itself a reference point and is therefore a space of
relative magnitudes only.

For cell sizes ∆x converging to zero, i.e., if the limit of infinite resolution is taken, the complexity
in Eqn. 3.29 diverges to −∞. This negative divergence is in contrast to the divergence of the
Shannon entropy to +∞ at infinite resolution. The sum, however, of both complexities can be
bounded, as shown in section 3.4.4 on differential and relative entropy in respect to an upper
bound.

3.4.2 Jensen’s inequality

For the rest of this work, the following relation, valid for concave functions and known as Jensen’s
inequality9, will prove essential:

Let f be a real-valued concave function, then for positive real numbers pi with
∑

i pi = 1 and
real numbers xi in the domain of f the following is true

N∑
i=1

pif(xi) ≤ f

(
N∑
i=1

pixi

)
(3.30)

with the essential addition that the equality holds exactly if all xi are equal – independent of
the pi. (For convex functions f the inverse relation f(

∑
pixi) ≤

∑
pif(xi) holds).

3.4.3 Maximum property of mean values and uniform distribution

When the distribution of pi is fixed, the function F : RN → R can be defined as:

F (x1, x2, · · ·xN ) =
N∑
i=1

pif(xi)

Moreover, if the mean
∑
pixi is fixed, then the function F has under this constraint according

to Eqn. 3.30 a global maximum at

x1 = x2 = · · ·xN =
∑

pixi

9https://en.wikipedia.org/wiki/Jensen’s_inequality

https://en.wikipedia.org/wiki/Jensen's_inequality
https://en.wikipedia.org/wiki/Jensen's_inequality
https://en.wikipedia.org/wiki/Jensen's_inequality
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because if the mean
∑
pixi is fixed, the xi are exactly equal if they are all equal to the mean.

Since the logarithm is concave, according to inequality 3.30 also

N∑
i=1

pi log(xi) ≤ log

(
N∑
i=1

pixi

)
(3.31)

is valid, which, as will be shown, implies among other things statements about the complexity
of a physical system composed of parts. Here the mean values

∑
pixi have the meaning of

conservative quantities, particle number and kinetic energy (conservation in the case of the
ideal gas), and the xi have the meaning of particle density and temperature, respectively. The
statements are that the complexity of the total system is maximal if the densities or temperatures
are equal in all subsystems, i.e. if the particles and the temperatures are equally distributed.

3.4.4 Differential, Relative and Density Entropy

The problem of divergence at unbounded resolution is also immediately apparent when the form
of Shannon entropy is transferred to the continuum in terms of a continuous probability density
P (x) in an integral. Namely it holds:

−
∫
P (x) log(P (x)dx) dx = −

∫
P (x) log(P (x)) dx−

∫
P (x) log(dx) dx (3.32)

The right side of this equation diverges according to the divergence of log(dx)→ −∞ for dx→ 0.
The integral −

∫
P (x) log(P (x)) dx is called Differential entropy10 in contrast to the Shannon

entropy −
∑
pi log(pi) for finite or at least discrete systems.

Using the Relative entropy11

−
∫
P (x) log

(
P (x)dx

Q(x)dx

)
dx = −

∫
P (x) log

(
P (x)

Q(x)

)
dx (3.33)

= −
∫
P (x) log(P (x)) dx+

∫
P (x) log(Q(x)) dx (3.34)

based on a second probability density Q it is possible to avoid the divergence. However, instead
of the general case of an initially arbitrary complexity log(Q(x)), in the following we will only
consider the cell complexity log(∆x/u) according to 3.29. One can weight these complexities in
an analogous way as it is done for the relative entropy 3.34 above, with the probabilities pi of
the Shannon entropy −

∑
pi log(pi) and finally consider the sum of both complexities, which I

call density entropy in the following:

SD := −
∑
i

pi log(pi) +
∑
i

pi log

(
∆xi
u

)
(3.35)

For example, in this equation ∆xi is the volume of a cell in position space and pi is the relative
particle share contained therein.

10https://en.wikipedia.org/wiki/Entropy_(information_theory)#Differential_entropy
11https://en.wikipedia.org/wiki/Kullback-Leibler_divergence

https://en.wikipedia.org/wiki/Entropy_(information_theory)#Differential_entropy
https://en.wikipedia.org/wiki/Kullback-Leibler_divergence
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It can then be stated that this sum, unlike Shannon entropy alone, is upper bounded – for
systems of finite extension – by the system size L :=

∑
∆xi. Namely, it holds because of

Jensen’s inequality 3.30:

SD =
∑
i

pi log

(
∆xi
piu

)
≤ log

(∑
i

∆xi
u

)
= log

(
L

u

)
(3.36)

In this relation, according to section 3.30, the equal sign holds exactly when the ratios ∆xi/pi
are all equal, i.e., the probabilities pi are proportionally equally distributed.

With the values qi := ∆xi/L normalized to 1, the density entropy finally takes the form of the
relative entropy, since

SD = −
∑
i

pi log

 pi
∆xi
u

 = −
∑
i

pi log

(
pi
qi

u

L

)
(3.37)

it follows:

SD = SD

(
L

u

)
= log

(
L

u

)
−
∑
i

pi log

(
pi
qi

)
(3.38)

The density entropy is thus the sum of an external (extensive) and an internal (intensive) com-
plexity. The external complexity is determined by the ratio L/u. In a physical interpretation
it is the expression of a relation of the system as a whole to the rest of the universe. The sum
on the right side in Eqn. 3.38, the actual relative entropy, on the other hand, is the measure of
exclusively internal relations represented by the internal relative quantities pi and qi and their
ratios pi/qi. This measure is always ≤ 0 according to the estimation 3.36, but this follows just as
well again from Jensen’s inequality. If we declare the extensive system size L to be the reference
quantity, i.e., set u = L, then the complexity of the external relation vanishes, and we obtain
the non-positive density entropy of the system normalized to 1:

SD(1) := −
∑
i

pi log

(
pi
qi

)
≤ 0 (3.39)

Further, it follows from the left-hand side of Eqn. 3.37 by transition to the integral representation,
the relation between the density entropy and the differential entropy

SD

(
L

u

)
= −

∫ ···+L

···
P (x)dx log

P (x)dxdx

u

 = − log(u)−
∫ ···+L

···
P (x) log(P (x)) dx (3.40)

and with Q(x) := 1/L from the right part of Eqn. 3.37 the relation of SD with the relative
entropy according to Eqn. 3.33:

SD

(
L

u

)
= log

(
L

u

)
−
∫ ···+L

···
P (x) log

(
P (x)

Q(x)

)
dx (3.41)

https://en.wikipedia.org/wiki/Entropy_(information_theory)#Differential_entropy
https://en.wikipedia.org/wiki/Kullback-Leibler_divergence
https://en.wikipedia.org/wiki/Kullback-Leibler_divergence


62 CHAPTER 3. FUNDAMENTALS OF ENTROPY

Thus, the density entropy SD as the sum of the Shannon entropy and the complexity of the
continuum is identical to the

• differentiel entropy −
∫
P (x) log(P (x)) dx (with integration over a volume of size L) taking

into account the correction constant − log(u),

• relative entropy, if this calculates the entropy of the distribution P relative to the uniform
distribution Q(x) ≡ L of the continuum (also over a volume of size L), taking into account
the correction constant log(L/u), the extensive complexity of the system relative to the
reference quantity u.

Since u is the arbitrary fixed value of the length unit of a reference scale, the relation between
SD and the differential entropy depends on this choice, but not the relation between changes
of both when changing the probability density, e.g. from P1 to P2, in which case even without
correction

∆SD = −
∫
P2(x) log(P2(x)) dx+

∫
P1(x) log(P1(x)) dx (3.42)

holds.

Finally, Jensen’s inequality 3.30 holds analogously for integrals, so that the differential entropy
in Eqn. 3.40 is also maximal exactly when all probabilities P (x) have the same magnitude, i.e.,
when P ≡ 1/L is uniformly distributed. Analogously to Eqn. 3.36 therefore also holds for the
differential entropy:

SD

(
L

u

)
≤ − log(u)− 1

L
log(1/L)

∫ ···+L

···
dx = log

(
L

u

)
(3.43)

3.5 Extensive and intensive size

3.5.1 Standard deviation

Extensivity in finite systems

Let

x :M→ R

be a function defined on a finite set M. We assume that because of finiteness the elements of
M can be represented by natural numbers 1, 2, ...N and therefore we immediately assume that
M := 1, 2, ...N is such a finite section of the natural numbers and x is a discrete function

x :M→ R, i 7→ xi

on the section. The indexed particles of classical physics, more precisely their indexed location
or velocity components along an axis of the position or velocity space, are examples of such a
function. For the variance σ2x of the function values, which is defined as the mean of the squared
deviations from the function mean, then holds:
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σ2x =
1

N

∑
i

xi − 1

N

∑
j

xj

2

=
1

N

∑
i

x2i − 2xi
1

N

∑
j

xj +

 1

N

∑
j

xj

2
=

(
1

N

∑
i

x2i

)
− 2

 1

N

∑
j

xj

2

+
1

N
N

 1

N

∑
j

xj

2

=
1

N

∑
i

x2i −

(
1

N

∑
i

xi

)2

=
1

N

∑
i

x2i − xi 1N ∑
j

xj

 =
1

2N2

∑
ij

(x2i − 2xixj + x2j ) =
1

2N2

∑
ij

(xi − xj)2

The important relations are:

σ2x =
1

N

∑
i

xi − 1

N

∑
j

xj

2

=
1

N

∑
i

x2i −

(
1

N

∑
i

xi

)2

=
1

2

 1

N2

∑
ij

(xi − xj)2
 (3.44)

Only mean values appear in this equation. In addition to the variance on the left side, in
particular, on the right side there is half the mean of the squared differences of all pairs (xi, xj)
– including such pairs with i = j.

Like the position and velocity states, the function x could also be defined with multiple compo-
nents, such as a function r : M → R3, i 7→ ri = (xi, yi, zi), for which – as for the component
functions xi, yi and zi – with the scalar product ri · rj instead of the simple product xixj the
relation 3.44 would hold. And it would be σ2r = σ2x+σ

2
y+σ

2
z . For simplicity, however, we consider

only one-dimensional systems, because the point is only to make clear the fundamental property
of the standard deviation σx :=

√
σ2x as an extensive measure of magnitude.

Since there are only finitely many function values, the number of absolute differences |xi − xj |
is also finite, so there is a pair (i, j) with maximum distance L, which we usually consider as a
possible benchmark for the system size. As Eqn. 3.44 shows, the variance does not represent
the square of this maximum distance, but is related – according to the right-hand side of the
equation – to the mean M [(∆x)2] of the distance squares, given by

M [(∆x)2] :=
1

N(N − 1)

∑
i ̸=j

(xi − xj)2 =
2

N(N − 1)

∑
i<j

(xi − xj)2 (3.45)

from which

σ2x =
1

2

N − 1

N
M [(∆x)2] (3.46)

follows. The correction factors 1/2 and (N − 1)/N have a common reason. Namely, they both
reflect the respective priorities of the two definitions. The focus of the variance is on the singular
function values xi with their respective relation to the common mean 1/N

∑
i xi, while the mean

M [(∆x)2] gives priority to the immediate relations between each two function values in the form
of the distance squares and as a consequence priority to pairs of the function values. With this
difference in priority the two factors are now related as follows:
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• Faktor 1/2: The variance measures the distance squares of the singular function values in
relation to the central mean 1/N

∑
i xi, while M [(∆x)2] takes into account the distance

squares with their full distances.

• Faktor (N − 1)/N : The right large parenthesis in Eqn. 3.44 shows that, as mentioned
above, the variance is also a mean of the distance squares, but it additionally includes the
squares (xi−xi)2, which, on the other hand, are explicitly excluded in the mean M [(∆x)2].
This correction is related to the Bessel correction12 in statistics, which becomes necessary
for samples with replacement so as to obtain an expectation-true sample, as shown in
expectation-true sample variance13. Accordingly, sampling experiments to estimate the
variance of a random variable differ from those to estimate the variability of the variable
based on pairwise differences. In the first case, the performance of each single experiment
is the establishment of a single value. In the second case, on the other hand, the single
experiment consists in finding two values.

Since the right-hand side of equation 3.44 does not depend on the choice of the reference point,
the same is true for the left-hand side, the variance. Therefore, to study the properties of the
variance, the reference point can be chosen to coincide with the mean, so that

1

N

∑
i

xi = 0 (3.47)

applies and thus also:

σ2x =
1

N

∑
i

x2i (3.48)

This equation states that the variance and with it the standard deviation σx disproportionately
emphasizes the periphery. That is, it grows monotonically for each i whose value xi moves away
from the reference point, the system center, and approaches the system outer boundary, and
therefore reaches its maximum when the system interior is completely emptied in favor of the
periphery. With the system outer boundary fixed, represented for example by the limits of an
interval [a, b], the standard deviation is therefore at its maximum when the xi are unevenly
distributed with the only two accumulations at a and b, as shown in the following figure:

a 0 b

Table 3.2: Periphery-heavy distribution with clusters at system outer boundaries a and b.

Because of Eqn. 3.47, if not all xi are zero, a < 0 < b. Let p and 1−p be the relative frequencies
for the frequencies of xi at a and b, respectively. From Eqn. 3.47 then we get p(−a)+(1−p)b = 0,
giving

p =
b

b− a
Correspondingly, Eqn. 3.48 becomes σ2x = pa2 + (1− p)b2, from which, together with the above
equation for p and L := b− a

σ2x = (−a)b = (L− b)b (3.49)
12https://en.wikipedia.org/wiki/Bessel’s_correction
13https://en.wikipedia.org/wiki/Variance#Unbiased_sample_variance

https://en.wikipedia.org/wiki/Bessel's_correction
https://en.wikipedia.org/wiki/Variance#Unbiased_sample_variance
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follows. All variances according to this equation are maximum variances of a respective system
configuration given by the system outer boundaries a and b or alternatively by the parameters
L and b, among which – for fixed L – again the symmetric configuration with b = L/2, shown in
table 3.3, has the largest variance σ2x = (1/4)L2. For the standard deviation of this symmetric
configuration holds:

σx =
1

2
L (3.50)

a 0 b

Table 3.3: Symmetrical periphery-heavy distribution

Intuitively, one would like to have the value L as the result of a measure of magnitude for this
distribution especially. The factor 1/2 for the standard deviation or 1/4 for the variance has its
reason firstly in the already above discussed factor 1/2 in Eqn. 3.46 and secondly in a second
factor 1/2, which results from the fact that due to the accumulations at the outer boundaries
also in the mean M [(∆x)2] as many differences |xi − xj | = 0 as |xi − xj | = L are contained.
M [(∆x)2] gives the expected result L in exactly one case, namely when N = 2, which excludes
differences |xi − xj | = 0. Overall, the results reflect nothing more than the simple fact that the
mean of the distance squares is smaller than their maximum. On the other hand, this makes
it very clear that the definition of the system size in the notion of extensive spreading is not
unique, for there is no reason why one definition should in principle be given precedence over
the other. This becomes even clearer if, instead of the periphery-heavy distribution, one looks
at the center-heavy distribution as in table 3.4 below, which in the extreme case has exactly one
function value at each of the two outer boundaries, but xi = 0 holds for all other i, with which
the variance disappears for large N .

a 0 b

Table 3.4: Center-heavy distribution

Between these two extreme cases, another characteristic distribution is the uniform distribution,
represented by the following table:

a 0 b

Table 3.5: Uniform distribution

To calculate its variance, we can first note that the distribution must be symmetric in relation
to the reference point. Moreover, the sum

∑
i x

2
i is independent of the order of xi. Therefore,

we can assume that i < j ⇔ xi < xj holds. If we further replace N by 2N + 1 for simplicity,
then it follows according to Eqn. 3.48 together with ∆x := xi+1 − xi which is independent of i
– because of the uniform distribution:
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σ2x =
1

2N + 1
2

N∑
i=1

(∆x · i)2 = 2(∆x)2

2N + 1

N(N + 1)(2N + 1)

6
≈ 1

12
(2N∆x)2 ≈ 1

12
L2 (3.51)

This results in the standard deviation of the uniform distribution for large N :

σx ≈
1√
3

1

2
L (3.52)

The result places the standard deviation of the uniform distribution in a fixed relation to the
maximum spread L of the system. Although this is also true for the periphery-heavy distribution
given by Eqn. 3.50. However, in terms of extensivity, the uniform distribution is unique. This
is because a uniformly distributed system S with sizes L,N can be arbitrarily decomposed into
sufficiently large, again uniformly distributed subsystems S1 and S2 with sizes L1, N1 and L2, N2,
respectively, for whose standard deviation then holds:

σx(S) ≈
1√
3

1

2
L =

1√
3

1

2
(L1 + L2) ≈ σx(S1) + σx(S2) (3.53)

The relation states that the standard deviation is more or less good within a uniformly distributed
system depending on the size of N , but strictly extensive in the limit N →∞ for all subsystems.

Extensivity in continuous systems

The end of the last section with Eqn. 3.51 for the uniform distribution already marks the
transition from finite to continuous systems, which is also equivalent to the transition from
Riemann sums14 of the square function to the integral with value (1/12)L2, as is shown below
in Eqn. 3.54, because for the limit of the left-hand side of Eqn. 3.51 we get because of L =
(2N + 1)∆x:

lim
N→∞

(
1

2N + 1
2

N∑
i=1

(∆x · i)2
)

= lim
N→∞

(
2

L

N∑
i=1

i2 ·∆x

)
=

1

L

∫ +L/2

−L/2
x2 dx =

1

12
L2 (3.54)

For general distributions, the change from finite discrete to continuous distributions takes place
in three steps. The first step consists in the combination of function values xi with the same
value. I.e. the function

x : i 7→ xi

is given a second function

p : i 7→ pi =
ni
N

(3.55)

with the frequencies ni of the function value xi or its relative frequencies pi. This step is simply an
equivalent representation of the same facts. The mapping x thus becomes an injective function.
The variance according to Eqn. 3.48 becomes:

σ2x =
1

N

∑
i

nix
2
i =

∑
i

pix
2
i (3.56)

14https://en.wikipedia.org/wiki/Riemann_sum

https://en.wikipedia.org/wiki/Riemann_sum
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The second step is based on the fact that the function x is now, because injective, also dispensable.
The original function x :M→ R is a namespace in the sense of section 3.3.1 for distinguishing
the elements of a set which do not appear in the function itself. In statistics, for example, the
elements of this set may be numbered individual experiments with the same result, so that the
experiments cannot be distinguished by the results, but can be distinguished by the index i.
The injectivity of x therefore means that the elements of the set x(M) are distinguishable – now
self-referentially – even without reference to the namespace. The index setM is thus represented
by its image setM′

:= x(M) ⊆ R, and we are left with the function:

p :M′ → R, x→ p(x)

The third step is to turn the finite setM′ into an uncountable set C ⊆ R of the continuum and
the probability distribution p into the probability density P :

P : C → R, x→ P (x)

Thus, the variance accourding to Eqn. 3.56 becomes:

σ2x =

∫
C
P (x)x2 dx (3.57)

From this, the variance of the uniform distribution with the constant function P (x) ≡ c on the
interval C = [−L/2, L/2], for which follows from the normalization condition

1 =

∫
C
P (x) dx =

∫ L/2

−L/2
c dx = cL

c = 1/L, yields the same integral as in Eq. 3.54 and therefore the same result.

A periphery-heavy continuous distribution on the interval [−L/2, L/2] can be represented by the
uniform distribution on the set C = [−L/2,−L/2 + l] ∪ [L/2 − l, L/2] with P (x) = 1/2l and
l≪ L. For their variance we get

σ2x =
1

2l
· 2
∫ L/2

(L/2)−l
x2 dx ≈ 1

l

(
1

3
3

(
L

2

)2

l

)
=

1

4
L2

thus also the same result as in the previous section for finite discrete systems, for which, however,
the results are exactly valid only if the limit N → ∞ is taken, which also applies to Eqn. 3.53,
i.e., for the extensivity of the discrete uniform distribution. Therefore, we can assume that the
continuity of the distribution is a prerequisite for the standard deviation to be guaranteed exten-
sive without error. And more precisely, as already indicated by the discrete uniform distribution,
it is the continuous uniform distributions that satisfy extensivity with precision, which becomes
clear in the following way:

Let
P : [a, b]→ P (x)

be any distribution on the interval [a, b] with a < 0 < b, for which 0 is not necessarily the
distribution mean, but any point in the interval. Then P on each subinterval [0, L] ⊆ [a, b] defines
a distribution QL : x 7→ QL(x) which emerges from P by re-normalization. The distribution P
is now extensive if and only if the standard deviations σ(QL) of the distributions QL grow in the
same way as the lengths L of the intervals [0, L], i.e., if σ(QL) depends linearly on L:
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σ(QL) = λL (3.58)

With the definition equation 3.44 or its continuous version this means:

∫ L

0
QL(x)x

2 dx−
(∫ L

0
QL(x)x dx

)2

= λ2L2 (3.59)

This integral equation for QL(x) in the variables x and L is solved by the uniform distributions

QL ≡
1

L
, which is shown by substituting the function into the equation, which yields λ2 = 1/12,

from which we finally obtain as in Eqn. 3.54 for all distributions QL:

σ(QL) =
1√
12
L (3.60)

Intensivity

Here we want to investigate the sensitivity with which the standard deviation is able to map
contractions or expansions of the distribution inside the system. To do so, we consider local but
– to register anything at all – system-wide expansions of a discrete system of length L with high
resolution N and their variance according to Eqn. 3.56. Let pix2i be one of the N summands of
the variance and ∆xi = xi+1 − xi. Let ∆pi be a part of pi shifted to xi +∆xi/2. Then, if ∆xi
is very small, the proportion of this pointwise shift to the total change in variance is equal to:

(
(pi −∆pi)x

2
i +∆pi

(
xi +

∆xi
2

)2
)
− pix2i ≈ ∆pi ·∆xi · xi

When the limit N → ∞ is taken this change turns into a differential x · dx · dp of second order
whose – also system-wide – integral always vanishes.

It follows that the variance practically does not register contractions or expansions on small
scales, so it does not reflect the intensive size of a system either.

Counting variance

If we have established now that the standard deviation perceives internal contractions only
insufficiently, then there is nevertheless a possibility to make it also receptive to it. And this can
be done by its adaptation to the hierarchical, i.e. the intensive structure of space, which is already
illustrated by table 2.6 with recursive bisection of the system cells. One can then introduce a
local scale on each bisected cell and assign to its two halves a −1 and +1, respectively, as we are
used to doing with a scale, which can be seen in the following figure:

−1 0 +1

Table 3.6: Scale to distinguish the two halves of a cell

We then proceed, as at the beginning of section 3.5.1, first from a distribution:

x :M→ R, i 7→ xi
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To make it concrete, let us assume that the mapping x describes the states of classical particles
in one-dimensional position space, from which we now pick out those residing in the bisected cell.
Let the set M thus be a finite set of indices for distinguishing the N particles in the bisected
cell. The mapping x then becomes the mapping

x :M→ {−1,+1}, i 7→ xi

We could then calculate the variance of the distribution according to the mean expression of Eq.
3.44:

σ2x =
1

N

∑
i

x2i −

(
1

N

∑
i

xi

)2

While the first sum
∑

i x
2
i = N always counts all N particles, for the second sum

∑
i xi holds

the following:

∑
i

xi =
∑

xi=−1

xi +
∑

xi=+1

xi = −
∑

xi=−1

(−xi) +
∑

xi=+1

xi =: −N− +N+

N− counts the particles of the left half of the cell and N+ correspondingly those of the right
half. Thus, the sum

∑
i xi = N+−N− establishes the difference of the particle numbers of both

halves. With the relative frequencies p− := N−/N and p+ := N+/N follows for the variance:

σ2x = 1−
(
N+ −N−

N

)2

= 1− (p+ − p−)2 = (1− p+ + p−)(1 + p+ − p−) = 4p−p+

The standard deviation is thus determined by the geometric mean of the proportions of the two
halves:

σx = 2
√
p−p+ (3.61)

Their behavior can be represented with x := p− by the function x 7→ 2
√
x(1− x). The following

figure shows its graph in blue along with the Shannon entropy x 7→ −x log(x)− (1−x) log(1−x)
in yellow:

Figure 3.6: Standard deviation according to Eqn. 3.61 together with the Shannon entropy

This standard deviation thus favors uniform distribution in the same way as Shannon entropy,
and also like Shannon entropy can grow at any scale if, for example – as with Shannon entropy
– the respective increase by halving a cell is weighted by its own relative size.
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3.5.2 Shannon entropy and its self-reference

Problem of extensivity and the counting principle

In the introduction we presented the model of a system for which the counting principle, or more
precisely the product rule of the principle, also defined in the introduction, has no validity. Now
the extensivity of the Gibbs entropy and that of the formally equal Shannon entropy stands or
falls with the product rule. For the Boltzmann entropies or the Shannon entropies of uniformly
distributed systems this follows directly from the additivity of the logarithm. For the Shannon
entropies of two systems with arbitrary distributions p11, p12, p13 · · · p1m and p21, p22, p23 · · · p2n
holds:

−
∑
i

p1i log(p1i)−
∑
j

p2j log(p2j) = −
∑
ij

p1ip2j log(p1ip2j) (3.62)

Thus, Shannon entropy is additive exactly when the probability products p1i · p2j are the proba-
bilities of the composite system. With reference to this, in the following I will give – in addition
to the model in the introduction – further reasons why the Shannon entropy cannot be a physical
entropy:

Independence: The systems under consideration are not systems with separate subsystems.
Rather, we are concerned with spatially adjacent subsystems whose independence is difficult
to establish. In any case, the independence is of unknown magnitude. Above all, it can be
assumed that with continued partitioning of the system into increasingly small subsystems,
the dependence increases, so that extensivity is valid at best in the limiting case of large
subsystems.

External reference: If we consider Shannon entropy as a model for density entropy, then it
has no reference to the size of space nor to the size of the absolute number of particles.
The absence of this reference makes its definition self-referential, because the probability
distribution p1, p2, p3 · · · fundamentally lacks reference to an environment. This is because
the probabilities, which we also interpret as relative quantities, map exclusively internal
relations. The extensive quantity of a system, however, is an external relation with respect
to the rest of the universe, as can be seen following Eqn. 3.38 for the density-entropy,
which – in the mentioned equation without absolute number of particles – has also only
logarithmic extensivity, but which thus at least stands in a relation to the extensive size of
space at all. In contrast to this, Shannon entropy is the exclusive result of a self-description
of the system.

Extensive connection: The addition of the entropies in Eqn. 3.62 is not the only way of
combining two distributions p11, p12, p13 · · · p1m and p21, p22, p23 · · · p2n in the systematics
of Shannon entropy. On the contrary, since the context of extensivity is about linking
distributions of different systems, Eqn. 3.13 gives the following impetus to unify the two
distributions: to this end, let p1 and p2 be the relative sizes of the two systems, then
according to Eqn. 3.13, the following sum is the Shannon entropy of the composite system:

p1

(
− log(p1)−

∑
i

p1i log(p1i)

)
+ p2

− log(p2)−
∑
j

p2j log(p2j)

 (3.63)

Unlike in Eqn. 3.62, however, no products p1i ·p2j arise here, so the question of the validity
of the product rule of the counting principle does not even arise. Rather, the Shannon
entropy is then certainly not additive, because the sum in 3.63 does not agree with the left
side of Eqn. 3.62.
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Complementarily, one can check, as it is done in the following section on density entropy, whether
the Shannon entropy complemented with the particle numberN , i.e. the entropy −N

∑
pi log(pi)

from the introduction or according to Eqn. 3.7 is additive. For the sum of two such entropies S1 =
−N1

∑
p1i log(p1i) and S2 = −N2

∑
p2j log(p1j) is obtained with probabilities p1 := N1/(N1 +

N2) and p2 := N2/(N1 +N2):

S1 + S2 = N1

(
−
∑
i

p1i log(p1i)

)
+N2

−∑
j

p2j log(p2j)


= (N1 +N2)

 N1

N1 +N2

(
−
∑
i

p1i log(p1i)

)
+

N2

N1 +N2

−∑
j

p2j log(p2j)


= (N1 +N2)

p1(−∑
i

p1i log(p1i)

)
+ p2

−∑
j

p2j log(p2j)


It can be seen from the last line that although the sum is correlated in magnitude with and only
with the number of particles, because the content of the large parenthesis is a mean value. On the
other hand, from the comparison with Eqn. 3.63 it is clear that the content of this parenthesis
does not have the form of Shannon entropy, i.e., it lacks, compared to this one, the entropy

−p1 log(p1)− p2 log(p2)

resulting from the bipartition, so that the defined entropy −N
∑
pi log(pi) grows more by system

expansion than the entropy sum S1 + S2.

Intensivity

In the case of the interpretation of Shannon entropy as an intensive quantity, we combine the
two probability distributions and their product on the right-hand side of Eqn. 3.62, in which one
distribution, e.g., p21, p22, p23 · · · p2n, the same decomposition p1i ·p21, p1i ·p22, p1i ·p23 · · · p1i ·p2n
of each probability p1i of the other distribution describes, with a hierarchically deepened and
system-wide uniform spatial resolution of a single physical system. (In the extensive interpreta-
tion of Eqn. 3.62, on the other hand, each of the two distributions describes the resolution of
the state space of a separate physical system each.)

To assess whether Shannon entropy is an intensive measure, it should be possible to distinguish
extensive from intensive change15. However, insofar as one gives preference to the resolution, i.e.,
understands changes as intensive and not as extensive change, the Shannon entropy according to
section 3.3.3 even increases infinitely and insofar maps the resolution after all, but at the same
time is indefinite precisely because of its infinity. This problem in turn is obviously met by the
creation of a concept, the coarse graining, as the following quotation shows:

In classical statistical mechanics, the number of microstates is actually uncount-
ably infinite, since the properties of classical systems are continuous. For example,
a microstate of a classical ideal gas is specified by the positions and momenta of all
the atoms, which range continuously over the real numbers. If we want to define Ω,
we have to come up with a method of grouping the microstates together to obtain a
countable set. This procedure is known as coarse graining. In the case of the ideal gas,
we count two states of an atom as the "same" state if their positions and momenta

15Cf. the end of section 3.3.2
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are within δx and δp of each other. Since the values of δx and δp can be chosen
arbitrarily, the entropy is not uniquely defined. It is defined only up to an additive
constant.[4]

Coarse graining says nothing else than that the resolution is limited because the entropy defi-
nition opposes infinitely fine resolution. Thus, its value depends on the arbitrarily chosen limit.
Finally, the statement, also made in the quotation, that regardless of this dependence, entropy
is well defined except for a constant, is certainly wrong, because it assumes that below a certain
scale the distinction between uniform and non-uniform distribution is meaningless, but for the
scales above it is not. I.e., actually it is assumed that below this scale there is only uniform distri-
bution, in which case the extension of the resolution and the entropy increase connected with it
are only caused by the continued division and therefore appear as meaningless. As will be shown
to some extent already in the following section, however, it is just the other way round, namely
that taking the limit to infinitesimal units is exactly one of the essences of physical entropy.

3.5.3 Density entropy and its double reference

Extensivity

The density entropy according to Eqn. 3.38 reflects the dualism of space and matter. In this
respect, the density entropy is a double-referential quantity measure in contrast to the Shan-
non entropy. Despite this connection, however, density entropy also requires a completion to be
extensive. In equation 3.35 it is defined as the sum of Shannon entropy and an averaged com-
plexity of the continuum, which, as for Shannon entropy alone, we cannot expect to be extensive.
Therefore, as was done for the Shannon entropy in section 3.5.2 in a supplementary experiment,
we also consider the particle number N . From the defining equation 3.35 we then get

SD(N) := −N
∑
i

pi log(pi) +N
∑
i

pi log

(
∆xi
u

)
(3.64)

and from Eqn. 3.38:

SD

(
N,

L

u

)
= NSD

(
L

u

)
= N log

(
L

u

)
−N

∑
i

pi log

(
pi
qi

)
(3.65)

By considering the number of particles now the density entropy becomes an additive and therefore
also extensive quantity. To show this, with definition of the relative lengths l1 := L1/u1 and
l2 := L2/u2, let

S1 = N1 log(l1)−N1

∑
i

p1i log

(
p1i
q1i

)

S2 = N2 log(l2)−N2

∑
j

p2j log

(
p2j
q2j

)

be the density entropies of two neighboring systems. With N := N1 + N2, p1 := N1/N , p2 :=
N2/N and two initially arbitrary probabilities q1, q2 with q1 + q2 = 1 we obtain:
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S1 + S2 = N

p1 log(l1)− p1∑
i

p1i log

(
p1i
q1i

)
+ p2 log(l2)− p2

∑
j

p2j log

(
p2j
q2j

) (3.66)

= N

p1 log( l1p1
q1

)
+ p2 log

(
l2p2
q2

)
−
∑
i

p1p1i log

(
p1p1i
q1q1i

)
−
∑
j

p2p2j log

(
p2p2j
q2q2j

)
(3.67)

Now the two product sequences p1p11, p1p12, · · · and p2p21, p2p22, · · · together form again a prob-
ability distribution and so do the sequences q1q11, q1q12, · · · and q2q21, q2q22, · · · so that the last
expression above has the form of a density entropy according to Eqn. 3.65 if there is a relative
length l for the composite system and values for the unknowns q1 and q2 such that

p1 log

(
l1p1
q1

)
+ p2 log

(
l2p2
q2

)
= log(l) = p1 log(l) + p2 log(l)

applies. This is certainly the case when

l1p1
q1

=
l2p2
q2

is fulfilled, from which together with q1 + q2 = 1 at first

q1 =
p1l1

p1l1 + p2l2
, q2 =

p2l2
p1l1 + p2l2

(3.68)

follows and with L/u := l finally:

L

u
= p1

L1

u1
+ p2

L2

u2
(3.69)

For the entropy sum we get

S1 + S2 = N

log

(
L

u

)
−
∑
i

p1p1i log

(
p1p1i
q1q1i

)
−
∑
j

p2p2j log

(
p2p2j
q2q2j

) (3.70)

which therefore again, derived from the information of the subsystems, has the form of the
density entropy 3.65, and which at the same time grows with the extensive particle number N
and according to Eqn. 3.66 insofar with N only in that the content of the large parenthesis in
this equation is the sum of two mean values, namely:

p1 log(l1) + p2 log(l2)

p1

(
−
∑
i

p1i log

(
p1i
q1i

))
+ p2

−∑
j

p2j log

(
p2j
q2j

)
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In the thermodynamic equilibrium of the composite system becomes from Eqn. 3.70, because
then the intensive complexity −

∑
i p1p1i log(· · · ) −

∑
j p2p2j log(· · · ) vanishes, together with

Eqn. 3.69:

S1 + S2 = N log

(
p1
L1

u1
+ p2

L2

u2

)
(3.71)

As an example of the equation, we can consider the composition of two equal systems in ther-
modynamic equilibrium, both with particle number N , length L

′ and unit length u
′ . For the

extensive length L of the total system, L = 2L
′ holds. From Eqn. 3.71 it then follows because

of p1 = p2 = 1/2

S1 + S2 = 2N log

(
L

′

u′

)
= 2N log

(
2L

′

2u′

)
= 2N log

(
L

2u′

)
(3.72)

so that the system extension with N → 2N and L
′ → L = 2L

′ is associated with a scale
transformation and transformation of the unit length

u
′ → u = 2u

′

One could conclude that the density entropy is also extensive only when the scale transformation
is taken into account. However, the following explanation seems more reasonable, according to
which the relative quantity L/u in Eqn. 3.65 has a hybrid meaning:

System composition: When systems are composed into a new whole, L/u is not an extensive
quantity, which is clearly shown in Eqn. 3.69, because according to it the value for L/u of
a composite system is the average of the single values Li/ui and therefore cannot correlate
with this number when an increasing number of systems are united and thus cannot be
extensive. But the quantity L is extensive. And if one now wants to express the entropy
by this extensive, but actually inappropriate quantity, then the simultaneous adjustment
of the scale is necessary accordingly. From this no arbitrariness is derived for the value of
the entropy of the composite system, because the value for L/u is, after all, determined
uniquely by Eqn. 3.69. Arbitrary, on the other hand, are the original quantities L1/u1
and L2/u2 of the initial systems, which is in the nature of the continuum, where there are
no absolute values, but only relative ones. In this respect, the equations 3.69 and 3.71 are
comparable with a logical implication.

System comparison: When comparing the quantities of different systems on the basis of a
common reference scale and unit of measurement u, L/u has the meaning of an extensive
quantity.

Furthermore, it becomes apparent how space and matter dualistically refer to each other. The
double reference arises from the fact that the description of a system by its parts follows a
different logic than that of the unification of whole systems to a new whole:

Description of a system by its parts: The description by division is about the description
of a single system on the basis of its parts. Considering such a system, its first – external
– description is the specification of its number of particles and that of its extensive size
L in space in relation to a unit of measure u. The length of this description is the ex-
tensive entropy N log(L/u) given by Eqn. 3.65. For the further – efficient – description
of the interior of the system, neither the particle number N , nor the quantities L and u
are required. Rather, the continuation of the description consists exclusively in the de-
termination of inner relations, so that for this purpose the particle number and the size
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of the space are both universally set to 1 and the inner relations are finally determined
by dividing the system and pair the relative quantities pi and qi or determine the relative
densities ϱi = pi/qi. In this composition, the definition of qi precedes that of pi. Thus, the
relative particle numbers pi are defined only in their reference to the relative cell sizes qi.
They are functionally dependent on the definition of qi.

Description of a union of whole systems: The description of a system united from a num-
ber of whole systems, for the sake of simplicity only the unification of two, on the other
hand has other conditions. Here, because it concerns whole systems, the complete descrip-
tions of both systems are present by definition, thus in particular the absolute particle
numbers N1 and N2, the extensive expansions L1 and L2 as well as the units u1 and u2.
Now, first the relative particle shares p1 = N1/(N1 +N2) and p2 = N2/(N1 +N2) can be
derived, but this time without reference to the relative quantities q1 and q2. Instead, it is
the other way around, because now these are derived according to Eqn. 3.68 by reference
from p1 and p2. Thus, the qi are functionally dependent on the magnitudes of the pi.

Intensivity

To study the intensivity of the density entropy, we consider, as for the Shannon entropy in section
3.3.3, the simple bisection of a subsystem with the relative particle share pi and the relative cell
size qi to get an idea of how the density entropy behaves at increasing resolution. However,
we fix the cell division by halving the cell size qi and distribute the particle share pi arbitrarily
between the halves. If pi1 and pi2 are these new relative particle shares of the two halves of the
cell relative to the total system with pi1 + pi2 = pi, then the halving results in the following
change ∆Si in the entropy of the i-th cell:

∆Si = −pi1 log
(
pi1
qi/2

)
− pi2 log

(
pi2
qi/2

)
+ (pi1 + pi2) log

(
pi
qi

)
= −pi1 log(pi1)− pi2 log(pi2) + (pi1 + pi2) log(pi)− pi log(2)

= pi

(
−pi1
pi

log
pi1
pi
− pi2

pi
log

pi2
pi

)
− pi log(2)

The second line shows that the two components of the density entropy, the Shannon entropy
and the complexity of the continuum, are independently affected by cell division. The third line
shows that, except for the factor pi, the change in the share of Shannon entropy again takes the
form of Shannon entropy16 and thus like it is non-negative. Thus, this share can at most increase
upon cell division17. In contrast, the already negative complexity of the continuum continues to
decrease, here by the amount pi log(2). For the sum of increase and decrease holds:

The Shannon entropy Ssh in the large parenthesis of the third line satisfies the inequality18

0 ≤ Ssh ≤ log(2)

from which follows by multiplying by pi and subtracting pi log(2)

−pi log(2) ≤ piSsh − pi log(2) ≤ 0

On the other hand, according to the above equation

∆Si = piSsh − pi log(2)
16Cf. Eq. 3.13
17Cf. Eq. 3.16
18Cf. Eq. 3.10 and 3.11
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applies and therefore also
−pi log(2) ≤ ∆Si ≤ 0

which results in

− log(2) ≤ ∆S ≤ 0 (3.73)

for the total entropy decrease ∆S =
∑

i∆Si in case of globally performed cell division after
summation over all cells.

Thus, like Shannon entropy, density entropy, regardless of the magnitude of pi – and thus at
any scale – has in principle the potential to change in the order log(2), but with the following
differences:

Monotonicity at cell division: The entropy falls monotonically at cell division, but not strongly
monotonically, which distinguishes it from Shannon entropy. Thus, the decrease in density
entropy is not obligatory and instead depends in each divided cell on the distribution of
matter between the two halves of the cell.

Specific nature of uniform distribution: The decrease is zero exactly when the particles are
equally distributed on both halves, while the increase of Shannon entropy has its maximum
exactly in this case, because the increase itself has again the form of Shannon entropy
maximized by the uniform distribution.

Convergence and divergence: While the Shannon entropy diverges like log(n) when divided
depending on the scale n, the resolution, the density entropy has in principle the potential
for both divergence and convergence.

Completeness of definition: In summary, one can clearly see here the incompleteness in the
definition of Gibbs entropy, which is no different from Shannon entropy, namely with
respect to its meaning in position space or momentum space. For the quantity pi, with
which the statement is associated that the relative particle share has just this value pi,
receives a meaning only by its relation to the assigned quantity qi in the respective space
in the form of the density pi/qi. Without this relation the definition of pi is arbitrary and
finally meaningless.

3.5.4 Relationship between extensive and intensive size

The aim of this section is to highlight the relationship between extensive and intensive size. For
this purpose, we assume that the standard deviation or, if possible, the volume within fixed
boundaries in space are suitable measures for the extensive quantity. The advantage of the
standard deviation is its greater generality, since it allows a finite, i.e., definite, measure even
for systems with infinite spread. Its disadvantage is that it is not itself strictly extensive, i.e.
additive.

As the previous sections have shown, the standard deviation is not sensitive to the relationship
between expansion and contraction inside the system. In fact, the volume excludes the perception
of internal changes altogether. In contrast, density entropy, as per the previous section, is
sensitive to both changes relative to the external environment and expansions or contractions
occurring inside the system. The density entropy can therefore be understood as a measure of the
extensive and at the same time of the intensive system size. The relation between the extensive
quantity, represented e.g. by the standard deviation σ, and the entropy S is the following (see
below):

S ≤ log
(σ
u

)
(3.74)
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As before, u denotes a fixed unit of measurement, which in the above inequality can also absorb
a possible additive constant – and just as well the generally, however, fuzzy relation between the
volume and the standard deviation as, e.g., according to Eqn. 3.60.

In the relation above, the uniform distribution of extensively finite systems and the normal distri-
bution of extensively infinite systems each have a special meaning among all other distributions.
Namely, they are precisely the distributions that maximize entropy with respect to a fixed ex-
tensive quantity expressed by the standard deviation. And for the entropy Smax of these two
distributions holds:

Smax = log
(σ
u

)
(3.75)

The entropy is therefore limited by the extensive measure upward and by this exactly then
unambiguously determined if the matter is completely expanded in the inside. Every inner
contraction on the other hand, i.e. deviation from the uniform distribution, is acknowledged with
a deduction. The simplest conception is that distribution gaps – connected with contractions at
other locations – lead to the entropy decrease. Then it is clear that volume in particular – as a
measure of size – does not register the gaps. Entropy, however, does perceive them, and at any
scale, so it responds not only to discrete density fluctuations but also to continuous ones. When
the gaps – even gradually – disappear completely, the complete system size coincides with the
external size, the logarithm of the volume.

It must be pointed out, however, that while the above relations 3.74 and 3.75 describe the relation
of entropy S or Smax to the extensive size σ of the system, these entropies themselves do not
have the property of extensivity because they are averages and, relatedly, not linear but only
logarithmically additive, as shown in the preceding sections.

In the following we want to consider the described connection by the example of different en-
tropies:

Shannon entropy: The relation also holds for Shannon entropy if one associates the number
n of probabilities exclusively with the extensive size of the system, thus avoiding the prob-
lematic mixing with internal division processes. If one sets u = 1, the two relations above
are nothing but Eqn. 3.10

S = −
n∑

i=1

pi log(pi) ≤ log(n)

with the addition that the equality holds exactly in the case of uniform distribution.

Density entropy at finite extension: For the density entropy and differential entropy of sys-
tems with finite extension, it is Eqn. 3.36 and 3.43:

S ≤ log

(
L

u

)
And again it is the uniform distribution which is distinguished by being the only function
which maximizes the entropy.

Density entropy at unrestricted extension: For the normal distribution

P (x) = 2
1√
2πσ2

e
−
x2

2σ2
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on the interval [0,∞) and the differential entropy according to Eqn. 3.40

S = − log(u)−
∫ ∞

0
P (x) log(P (x)) dx

we obtain with
σ2 =

∫ ∞

0
P (x)x2 dx

S = − log(u)−
∫ ∞

0
P (x)

(
1

2
log(2)− 1

2
log(πσ2)− x2

2σ2

)
= log

(σ
u

)
+log

(√
eπ

2

)
(3.76)

However, since the normal distribution not only exactly satisfies this equation, but – for a
fixed standard deviation – also maximizes the differential entropy19, the two relations 3.74
and 3.75 for the entropy above also apply here.

3.5.5 Relationship between uniform distribution and normal distribution

The last section suggests a close relationship between the uniform distribution and the normal
distribution, which will be explored in the following sections.

Norm conserving expansion and contraction transformations

Let F1(L) be the function space of functions bounded and normalized on the finite interval [0, L].
For a function

f : [0, L]→ R+

then f ∈ F1(L) holds exactly if it is bounded and integrable and if at the same time∫ L

0
f(x) dx = 1

is true. Now let
F1 :=

⋃
L∈(0,∞)

F1(L)

be the set of all functions normalized respectively on a finite interval [0, L].

In parallel, we define the function space F2 of the functions f : [0,∞)→ R+ restricted to [0,∞)
and normalized, for which thus also holds:∫ ∞

0
f(x) dx = 1

Finally, let
F := F1 ∪ F2

be the set of all these normalized functions with the bijective mappings

Ea : F → F , f 7→ fa := Ea(f) (3.77)

for a ∈ (0,∞), which is given by the equation:

fa(x) =
1

a
f
(x
a

)
(3.78)

19https://en.wikipedia.org/wiki/Differential_entropy#Maximization_in_the_normal_distribution

https://en.wikipedia.org/wiki/Differential_entropy#Maximization_in_the_normal_distribution
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For f ∈ F1(L) fa is defined on [0, aL]. Correspondingly, with f ∈ F2, fa is also a function on
[0,∞). Further, in both cases, i.e. if f ∈ F , fa is certainly bounded and integrable, but also
normalized, because compared to f the domain of fa, if e.g. a > 1, is stretched by a factor a
and at the same time the image is compressed by 1/a. More precisely, the normalization follows
from integration by substitution, because then holds:

∫ aL

0
fa(x) dx =

∫ aL

0

1

a
f
(x
a

)
dx =

∫ L

0
f(x) dx = 1

Correspondingly, for f ∈ F2:20

∫ ∞

0
fa(x) dx =

∫ ∞

0

1

a
f
(x
a

)
dx =

∫ ∞

0
f(x) dx = 1

Finally, as claimed, Ea is also bijective, since E1/a is its inverse function.

Moreover, for all functions f ∈ F holds:

lim
a→∞

fa(x) ≡ 0 (3.79)

Namely, if maxf is the upper bound of the function f ∈ F , then fa(x) ≤ (1/a)maxf .

Since all functions in F are normalized, they can also be interpreted as distributions. For a > 0
the mapping Ea is then an expansion transformation and for a < 0 a contraction. The following
two figures show the relationship between contracted and expanded normal distribution and
uniform distribution, respectively:

Figure 3.7: Normal distribution (yellow) and its expansion with factor
√
2 (green)

20Cf. section 2.3.1 on time reversal and reversibility of the heat equation

https://en.wikipedia.org/wiki/Integration_by_substitution


80 CHAPTER 3. FUNDAMENTALS OF ENTROPY

Figure 3.8: Uniform distribution (yellow) and its expansion with factor
√
2 (green)

Physically, conserving the norm corresponds to a conservation law, specifically that of the number
of particles or energy.

For the differential entropy S(fa) of the transformed distribution fa of a distribution f ∈ F1(L)
applies

S(fa) = − log(u)−
∫ aL

0
fa(x) log(fa(x)) dx

= − log(u)−
∫ aL

0

1

a
f
(x
a

)
log

(
1

a
f
(x
a

))
dx

= − log(u)−
∫ aL

0

1

a
f
(x
a

)
log f

(x
a

)
dx+ log(a)

∫ aL

0

1

a
f
(x
a

)
dx

= − log(u)−
∫ L

0
f(x) log(f(x)) dx+ log(a)

∫ L

0
f(x) dx

and so:

S(fa) = S(f) + log(a) (3.80)

The same result is obtained for distributions f ∈ F2. Thus, the entropy increase log(a) associ-
ated with the expansion is exclusively a function of the extensive spreading and, in particular,
independent of the function f .

Correspondingly, for the standard deviation σ of the distributions f ∈ F follows

σ(fa) = a · σ(f) (3.81)

which in this respect therefore resembles the length L of the domains [0, L] of the F1-functions.
For it holds exemplarily for f ∈ F2:

σ2(fa) =

∫ ∞

0
fa(x)x

2 dx−
(∫ ∞

0
fa(x)x

)2

dx

=

∫ ∞

0

1

a
f
(x
a

)
a2
(x
a

)2
dx−

(∫ ∞

0

1

a
f
(x
a

)
a
x

a

)2

dx

= a2
∫ ∞

0
f(x)x2 dx− a2

(∫ ∞

0
f(x)x

)2

dx

= a2σ2(f)
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Scale transformations

A scale transformation is the substitution of the unit of measurement first appearing in Eqn.
3.29. Suppose that u replaces the unit of measure u′ . Let the ratio of the two be:

a =
u

u′ (3.82)

If g : x 7→ g(x) is a distribution g ∈ F as in the previous section, then x = x(u
′
) is a quantity

relative to a pair consisting of the unit of measure and the reference scale in scale space defined
jointly with it. With x(u

′
) · u′ a point in space is marked relative to the reference point 0. For

the same point to be marked on the scales of both units u′ and u,

x(u) · u = x(u
′
) · u′

must be, thus also:

x(u) =
x(u

′
)

u

u′

=
x(u

′
)

a

The scale transformation together with the adjustment u′ → u = au
′ of the units of measure

thus implies the substitution

x(u
′
)→ x(u) =

x(u
′
)

a

For a distribution function g : x 7→ g(x), the scale transformation therefore implies that the
argument x must be substituted in the same way.

If one additionally demands for the scale transformations that with them also the normalization
is preserved, namely on every subinterval of the definition range of a function g, then they
must finally be identical with the expansion and contraction transformations. For if f is the
distribution arising from g by scale transformation and is normalized on each subinterval in the
same way as g, then holds: ∫ x/a

0
f(x

′
) dx

′
=

∫ x

0
g(x

′
) dx

′

From this it follows by derivation
1

a
f
(x
a

)
= g(x)

and it holds inversely with a′
= 1/a

1

a′ g
( x
a′

)
= f(x)

so that the scale transformation with a = u/u
′
> 1 corresponds to a contraction of the function

g.

The limit connection

The sets F1(L) form equivalence classes in F1. In each of these classes, by section 3.5.4, the
uniform distributions with

uL(x) ≡
1

L

are each distinguished by being the only ones of the functions normalized on [0, L] that maximize
differential entropy.

The set F2 can also be decomposed into equivalence classes by grouping in it functions each
having the same standard deviation. Let F2(σ) ⊂ F2 be defined by:
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f ∈ F2(σ)⇔ σ(f) = σ (3.83)

For each equivalence class F2(σ), according to section 3.5.4, the normal distribution is

nσ(x) =
1

σ

√
2

π
e
−
1

2

(x
σ

)2

is the only function that maximizes the differential entropy.

For a ∈ (0,∞) then holds:

Ea(F1(L)) = F1(aL) (3.84)

Ea(F2(σ)) = F2(aσ) (3.85)

Both equations follow from the defining equation 3.78 for the transformation Ea:

• If f ∈ F1(L), then f is defined on [0, L] and hence Ea(f) is defined on [0, aL], so Ea(f) ∈
F1(aL). The equality in Eqn. 3.84 follows from the bijectivity of Ea.

• If f ∈ F2(σ), then by definition f has standard deviation σ. According to Eq. 3.81, Ea(f)
thus has standard deviation aσ and is therefore included in F2(aσ). The equality in Eqn.
3.85 follows again from the bijectivity of Ea.

Equations 3.84 and 3.85 state that under the mapping Ea the image of each equivalence class
of the sets F1 and F2, respectively, is in turn an equivalence class. In this context, the obvious
interpretation of Eqn. 3.80 is the notion that Ea does not change the magnitude relations among
the functions of an equivalence class if one considers the entropy difference of each two functions
of a class as an expression of these relations. In other words, the entropy growth around the
value log(a), which is the same for all functions, reflects exclusively the extensive expansion or
contraction L → aL or σ → aσ. Relations inside the function spaces, on the other hand, are
conserved. The reason for this, however, is that also the relations between the function values
of a function f are conserved, which already follows from the defining equation 3.78, because
according to it:

fa(x1)

fa(x2)
=
f
(x1
a

)
f
(x2
a

)
Finally, we can define another bijective mapping A which pairs the equivalence classes of both
sets F1 and F2. This can be done with any linear function that assigns a standard deviation σ
to the length L of an interval [0, L]:

σ(L) = λL

.

The mapping A then depends on λ and is defined as follows:

Aλ : F1(L) 7→ F2(σ(L)) = F2(λL) (3.86)
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In the following I consider the transformation Ea also as a function respectively on the power
sets P(F1) and P(F2). On P(F1), for example, let Ea be the function

Ea : P(F1)→ P(F1),S 7→ Ea(S)

where Ea(S) is the image set of S under the expansion and contraction transformation Ea as
defined in 3.77. Thus, it follows from Eqn. 3.86 together with Enq. 3.84 and 3.85 initially:

Aλ ◦ Ea(F1(L)) = Aλ(F1(aL)) = F2(λaL)

Ea ◦Aλ(F1(L)) = Ea(F2(λL)) = F2(aλL)

So for all a > 0 the following is true

Aλ ◦ Ea(F1(L)) = Ea ◦Aλ(F1(L)) (3.87)

and, because E1/a is the inverse of Ea, we get

E1/a ◦Aλ ◦ Ea(F1(L)) = Aλ(F1(L)) = F2(λL) (3.88)

from which by multiplication from left by E1/a ◦A−1
λ ◦ Ea also

E1/a ◦A−1
λ ◦ Ea(F2(λL)) = F1(L) (3.89)

follows. Because the respective right-hand sides of the last two equations are independent of a,
the limits for a→∞ exist on the left-hand side, yielding the following relationships between the
normalized functions on the finite interval [0, L] and those with standard deviation λL on the
infinite interval (0,∞):

lim
a→∞

(E1/a ◦Aλ ◦ Ea(F1(L))) = F2(λL) (3.90)

lim
a→∞

(E1/a ◦A−1
λ ◦ Ea(F2(λL))) = F1(L) (3.91)

Now these equations do not yet make any statement about the relation between the uniform dis-
tributions and the normal distributions, but only about that between the sets F1(L) and F2(λL),
which are assigned to each other by Aλ according to 3.86 – independently of Ea. Conversely,
however, it follows that the equations also hold for subsets S1 ⊆ F1(L) and S2 ⊆ F2(λL) if they
are like those given by a mapping

Bλ : S1 7→ S2
mapped to each other, which is defined independently of Ea. This is certainly possible if there
is a selection procedure for the elements of these subsets from the sets F1(L) and F2(λL). Now,
in any case, the definition of a choice is possible for the uniform distribution and the normal
distribution due to their distinction by entropy maximization within the sets F1(L) and F2(λL),
respectively. Thus, we define the one-element subsets S1(L) ⊂ F1(L) and S2(σ) ⊂ F2(σ) such,
that the first subset contains the uniform distribution uL on the interval [0, L] and the second
contains the normal distribution nσ with standard deviation σ = λL. However, we can go
one step further for simplicity and focus on the elements themselves instead of the one-element
subsets. With this difference, analogous to Aλ in 3.86, we define the mapping Bλ as follows:
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Bλ : uL 7→ nσ = nλ·L (3.92)

The above derivations, from the definition 3.86 to the taken limits, can then be performed
analogously, so that the following relations hold for the relation between equal and normal
distributions:

lim
a→∞

E1/a ◦Bλ ◦ Ea(uL) = nλ·L (3.93)

lim
a→∞

E1/a ◦B−1
λ ◦ Ea(nλ·L) = uL (3.94)

Interpretation

From the mere assignment Bλ in Eqn. 3.92 between uniform and normal distributions, the
equality relations of Eqn. 3.93 and 3.94 result. Because further the transformations Ea can also
be interpreted as mere scale transformations, the distinguishability of the uniform distribution
from the normal distribution is not guaranteed.

The two distributions differ essentially in that the normal distribution reflects the asymmetry of
infinite space, but the uniform distribution does not reflect that of finite space. For even in a
closed interval [0, L] the points have different relations to each other. The peripheral points differ
from the points in the interior of the interval. This difference is not reflected in any way in the
function values of the distribution, which are the same everywhere, so that it symmetrizes the
in and of itself asymmetric space. The normal distribution, on the other hand, by its function
values, exposes the broken symmetry of space, which is related to a distinguished point at which
it has its maximum.

If a function is uniformly distributed on every finite part of space, and it has a distinguished
point, then it is normally distributed.



Chapter 4

Mass points, individuals and collectives

4.1 Extensive complexity of mass points

The definition of complexity in the previous chapters makes it difficult to reconcile it with the
notion of classical physics of mass points, according to which each mass point has an exact
location and an exact velocity

• in relation to a reference point resp. a reference velocity

• in a respective continuous space

For then the size of the state space as well as the description complexity of the position and
the velocity of only one mass point is infinite, because the sets of its possible positions and
its possible velocities are uncountable, which is reflected in the description complexity in the
irrationality of the particle coordinates with infinitely many decimal places. Thus, for the sake
of the finiteness of the complexity, one is forced to a discretization, i.e. to a limitation of its
intensive size, the definition of which, however, is undetermined, which is, finally, one of the
reasons why the continuum – in comparison with the discrete space – is given priority at all.

Now this is certainly true if one equates the complexity of the mass point with the complexity
of its state space. The discretization of space and also the limitation of its extensive size is
compelling. But even for a classical system that is finite in all respects, defining the particle
complexity over its state space is difficult because the definition of the governing state space is
indeterminate. For instance, if an otherwise free particle is confined in a space with only a few
possible local states, say n, we are quick to identify the size of the governing state space for com-
plexity with this number n, with the consequence that particle complexity is time-independent.
If, on the other hand, the system size spans, say, several light-years and n is therefore correspond-
ingly large, we would certainly not associate the complexity of a particle whose initial state we
know with the number n at the very beginning of the observation. Rather, in this case we cannot
avoid tying the particle complexity to the description of the actual particle state, which in turn
means, conversely, especially for small systems, that the complexity is cyclic.

Accepting these problems, for one-dimensional systems one can define the complexity of a particle
as an extensive description complexity of the actual state as follows based on Eqn. 3.29, e.g., for
the state x of the particle in relation to a reference point in position space:

C := log

(
|x|
u

)
The attribute extensive is necessary because the definition excludes and must exclude the question
of the precision of the distance |x|, i.e. that of its infinite intensive complexity.

85
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Another problem of the definition is its dependence on the reference point, which does not even
disappear if one is interested only in its changes instead of the complexity itself, which at least
eliminates the dependence on the reference measure u. Namely, if x and x+∆x are two different
states of the particle, then when x changes to x+∆x:

∆C = log

(∣∣∣∣x+∆x

∆x

∣∣∣∣)
The importance of the reference point is that by the common reference to it the description of
a many-particle state is redundancy-free and thus in particular simple, but also contradiction-
free. The complexity of the description of a many-particle state is in this way proportional only
to the number of particles, which implies that the relative information between two particles,
which is so important for the dynamics of the system, their relative positions in space and their
relative velocities, is implicitly derived from the relations of both particles to the reference point.
In contrast, the description of the many-particle state bypassing a reference point and instead
based on all relative information is complex, the description effort proportional to the number of
particle pairs and thus proportional to the square of the number of particles. Most importantly,
the information is redundant with the risk of not matching and thus not uniquely defining a
system. If one considers for example only three points in the plane, thus a triangle, then its
definition is simple by indication of each point’s position in relation to a common reference
point, and the three positions will always unambiguously define a triangle. Relative information,
on the other hand, such as only the distances between each two of the three points, must be
available with error-free precision in order to uniquely define a triangle at all. On the other hand,
the redundancy-free description is only seemingly unique if it does not include the information
about actually existing lack of precision.

Now it is interesting that in his analysis of the many-particle system probably the most important
decision of Newton is the decomposition of the system into the pairwise relations of two particles
each, by which he made relative information the basis of his axiomatics and thus the basis of the
dynamical evolution of a system, although he was convinced of the Absolute Space1 in contrast
to, for example, Leibniz, for whom only relative motion made sense, as is also evident from the
article linked above. In the said Newton’s decomposition a fundamental independence of the
relation between each two particles from all other particles is expressed.

In a further attempt to define the complexity of a system of mass points, in order to avoid the
problem of the reference point described above, we can, on the basis of the relative state of
two particles with the relative distances ∆x,∆y and ∆z, define their relative complexity in the
continuous space of positions on the basis of Eqn. 3.29 and a reference length u as follows:

C := log

(∣∣∣∣∆x ·∆y ·∆zu3

∣∣∣∣)

Here, however, an even more serious problem arises because, although the complexity does not
depend on the choice of reference point, it does depend on the orientation of the reference axes in
space and even diverges if at least one of the three components ∆x,∆y or ∆z approaches zero.

Finally, the attempt to define the complexity as a pure distance complexity

C := log

(√
∆x2 +∆y2 +∆z2

u

)
1https://en.wikipedia.org/wiki/Absolute_space_and_time

https://en.wikipedia.org/wiki/Isaac_Newton
https://en. wikipedia.org/wiki/Absolute_space_and_time
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz
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is insufficient because it does not take into account the complexity of the relative twists of the
two-particle axes for a many-particle system.

Thus, one is again thrown back to a single space dimension for which, however, the two-particle
complexity of the relative state with distance ∆x can finally be defined:

C := log

(
∆x

u

)
(4.1)

This results in the change ∆C of complexity when changing the distance from ∆x1 to ∆x2:

C := log

(
∆x2
∆x1

)
(4.2)

4.2 From distinguishable individuals to collectives

The last section shows clearly that the definition of the complexity of a classical mass point or
of the relation of two mass points is not possible if it considers the intensive description effort
in addition to the extensive one. In addition, it is unsuitable for three-dimensional space. Now
the pointed out difficulties are not actually limited to mass points. Rather, they arise from the
assumption that particles are distinguishable individuals, which is why they are distinguished by
an index in classical physics. So let us consider an individual particle with – in contrast to a mass
point – non-vanishing size, i.e. a distribution in space which is possibly even unbounded, for
instance in the sense of quantum mechanics. If this is not exactly the uniform distribution, then
with regard to the size of its exact description in relation to a reference point and therefore for
its complexity also exactly the same problems arise as in the case of the individual mass point.
For it seems clear in any case that the description presupposes the selection – of a preferably
distinguished – point of the distribution, e.g. the distribution mean, whose description in relation
to a reference point, however, does not differ from that of a mass point. The same is true for the
description of the relative state of two such distributions.

In summary: Individuals can be described in relation to a reference point of the continuous space
and also in relation to each other only fuzzy. That is, either the description is indeterminate or
the complexity is infinite. In particular, the definition is limited to one-dimensional space.

To continue, therefore, the restriction to mass points is again sufficient for the time being. The
section 3.5.1 on the standard deviation gives a hint that the state description of the whole system
is also possible in another way, as far as the distinguishability of the particles is renounced.
Namely, this is done by introducing the relative frequency pi in 3.55, with which particles are no
longer distinguished, but only counted. Particles are then no longer distinguishable from others
by virtue of themselves, but only by their state. Even more clearly the collectivization is shown
in the counting variance in section 3.5.1, which again is related to entropy, if it is determined
like the latter on all scales, in which case it uniquely determines the state of a system with many
or even few particles – at the cost of particle individuality.

At this point it becomes clear that classical mechanics is a theory against the background of
the extensive space, in which the infinity of the intensive space is blanked out and thereby the
infinite effort of the state definition for an individual particle is just as little imposed, which
however is necessary for a particle distinguishable from others, because this then also claims its
individual description of its state.
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4.3 From mass points to distributions

The surrender of the particle individuality mentioned in the last section is thus a necessary con-
dition for the fact that the complexity of a physical system is finite. However, the collectivization
of particles is in principle possible for mass points in the same way as for particles each with its
own distribution. In this section, therefore, we will consider collectives of mass points in terms
of both density entropy and Shannon entropy, regardless of the fact that Shannon entropy has
already disqualified itself for a physical entropy due to its insufficient extensivity2.

Namely, we start with the Shannon entropy, or the entropy

−N
∑
i

pi log(pi)

introduced in the introduction, and assume an infinite partitioning hierarchy to calculate the
entropy. Because the number of particles N is finite, there exists a scale of the hierarchy such
that for all cells Ci of the scale, either pi = 0 or pi = 1/N . The entropy at this scale is then
equal to N log(N). The same is true for all other scales downscale, so the entropy limit exists
at infinite resolution and has the value N log(N), which corresponds to the complexity defined
in section 3.3.1 over finite ordered namespaces for distinguishing the N particles. Now this is a
problem in that the entropy thus has a finite, but time independent value. Time dependence is
only possible by limiting the resolution, which in turn is arbitrary and thus indeterminate.

The density entropy according to 3.64 is the sum of the entropy just considered and the com-
plexity of the continuous space, which, except for the number of particles N , coincides with the
mean cell complexity ∑

i

pi log

(
∆xi
u

)
but which diverges toward −∞ in the limit of infinite resolution, because the cell sizes ∆xi
converge to zero by definition. Since the first part of the density entropy has the finite value
N log(N) at infinite resolution according to the above, the density entropy of a system of finitely
many mass points is thus negatively infinite and thus indeterminate. It can have finite values only
at finite resolution, in which case, however, like the Shannon entropy of a particle continuum, it
is as indeterminate as the chosen resolution is.

In a summary to this point, with respect to the possibility of defining complexity for physical
systems:

Particle individuals: Models based on particle individuals are ruled out because they contra-
dict the intensive structure of space and therefore can at best represent extensive complex-
ity, since each individual would have infinite complexity by itself.

Particle collectives: For models with collectives of mass points, the Shannon entropy is either
constant in time, or it has a value that depends on the resolution and is thus indeterminate.
The density entropy of such systems is either negatively infinite, or at – finite resolution –
like the Shannon entropy, it has no definite value.

2cf. section 3.5.2 on the extensivity of Shannon entropy



Chapter 5

Monotonicity in classical physics

5.1 Correlation and monotonicity in position space

5.1.1 Free particles, Loschmidt’s paradox and the arrow of Time

The approach to understanding entropy, interpreting it as a measure of a molecular chaos1,
and the approach of explaining the entropy increase with the H-theorem2 by collisions between
particles, met with criticism Loschmidt’s, known as Loschmidt’s paradox3, according to which
irreversibility contradicts the time reversibility (time symmetry) of the equations of motion,
which means that the reverse evolution, in which a complex state evolves into a simple state, is
also possible.

Now it follows from this argument only that among all the processes described by the equations
of motion, for every process A there is a second process which – in the same time direction –
reverses the evolution of A. It does not mean, on the other hand, that the process A reverses
itself at a point in time. Rather, the reversal requires a preparation which mirrors all impulses
of the system at a point in time, but which does not happen spontaneously and by itself. In this
respect, the time symmetry of the equations of motion is not inconsistent with the monotonic
change of a physical quantity in a process running by itself, which, as shown below, is certainly
true for the simplest physical processes.

First of all, it is different with the recurrence theorem4 of Henri Poincaré, whose simplified
statement is that a physical system with restriction of the extensive many-particle phase space
volume comes arbitrarily close to a state once taken arbitrarily often in the future. The condition
of the restriction is:

A finite upper bound can be set on the total potentially accessible phase space
volume. For a mechanical system, this bound can be provided by requiring that the
system is contained in a bounded physical region of space (so that it cannot, for
example, eject particles that never return) – combined with the conservation of energy,
this locks the system into a finite region in phase space.[10]

For an isolated system, the condition applies to momentum space with constant energy, but not
to volume in position space. In this respect the recurrence theorem is related to Loschmidt’s
paradox. While the latter requires the one-time preparation of the system, the recurrence theorem

1https://en.wikipedia.org/wiki/Molecular_chaos
2https://en.wikipedia.org/wiki/H-theorem
3https://en.wikipedia.org/wiki/H-theorem#Loschmidt’s_paradox
4https://en.wikipedia.org/wiki/Poincar%C3%A9_recurrence_theorem
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presupposes the permanent external influence to prevent the expansion of the system in the
position space.

In the following, we will show that the simplest physical systems – left to themselves – neces-
sarily expand monotonically in position space, showing first that the condition of the restriction
of the recurrence theorem is not physically guaranteed for isolated systems and second that
these systems are characterized by at least one form of monotonicity, which is equivalent to the
irreversibility of any state once assumed.

It is essential to note that the monotonicity is the compelling consequence of the deterministic
equations of motion and does not contradict the untouched correlation of the particles. Thus,
the equations of motion imply the monotonicity and at the same time conserve the correlation of
the particles, which is ultimately Loschmidt’s thesis, namely that the information of each state
passed through is conserved in each future state and thus – in principle – reconstructible.

And namely, the monotonicity of state evolution is a consequence of the asymmetry of both
extensive and intensive space. The asymmetry of the extensive space is directly reflected in the
asymmetry of the natural numbers between the finite and the infinite, which in turn is generated
by the broken symmetry of the predecessor mapping of the Natural Numbers by the zero, which
is the only element that has no predecessor. Also to the intensive space belongs the asymmetry
of the Natural Numbers. In this case it is the asymmetry between the finite and the infinite
scales, thus between the finitely large and the infinitely small.

An outstanding implication of the asymmetry of the Natural Numbers is shown in the second
volume on the continuum, namely the impossibility of the global rearrangement of the Natural
Numbers, which in summary means that there is no way out of the extensively or the intensively
infinite into the finite. Similarly, the asymmetry in the complexity log(N) of the first N natural
numbers is shown by Eqn. 3.3, i.e., in the inevitability of the existence of short and long names.
More generally, the asymmetry is shown by the complexity log(∆x/u) of the continuum according
to Eqn. 3.29, which is positive for the extensive space (∆x ≥ u) and negative for the intensive
space (∆x < u). While the limit

lim
∆x→u

log

(
∆x

u

)
= 0 (5.1)

represents the complexity of the finite space, the limits

lim
∆x→∞

log

(
∆x

u

)
→ +∞ (5.2)

lim
∆x→0

log

(
∆x

u

)
→ −∞ (5.3)

belong to the extensive or to the intensive infinity of the continuum.

As announced above, let us now turn to the simplest physical systems consisting exclusively of
free particles. For this purpose we consider a one-dimensional classical system of exactly two
free inertial particles with conservation of mass of each particle, which we interpret in such a
way that the particles are neither created nor annihilated. Now we can distinguish two states
of motion, contraction and expansion. In the first case, the particles move toward the common
center of mass and thus toward each other. The relative distance ∆x decreases and with it also
the complexity of the two-particle system, while for the expansion the negation is valid:

• Kontraktion:
d

dt
log

(
∆x

u

)
< 0
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• Expansion:
d

dt
log

(
∆x

u

)
≥ 0

Mathematically, both states can be realized at will by prescribing appropriate initial conditions.
For the physical realization of the contraction there are two possibilities:

• The contraction continues unchanged since unlimited time.

• The state was changed (prepared) at a time of the past, from which follows compellingly,
since there are only the two generalized states contraction and expansion for the two free
particles, that a change from the expanding to the contracting state has taken place.
Otherwise we would be again at the first case.

The first case is ruled out because it presupposes the entry of the two particles from the infinite
into the finite, which corresponds to a rearrangement of the order of the extensive infinite space
and thus to a global rearrangement of the natural numbers, as described above.

The second case, the inversion of the existing expansion into a contraction is not possible for
the system of exactly two free particles, so that the expanding relative state remains as the
only possible one and thus the complexity of its relative state can only increase. Overall, then,
the complexity – or simply the particle distance – of the unbounded two-particle system is
monotonically increasing with time, and any change of relative state is irreversible.

The same is true for an extended one-dimensional classical system of finitely many particles
with elastic collisions between neighboring particles. None of the particles, including the two
outermost (peripheral) particles, can have entered the system from infinite space into the finite
marked by the common center of mass. Thus, the two peripheral particles can only expand
relative to each other. And a preparation of their relative state with the aim of reversing their
expansion into contraction is not possible with collisions self-referentially brought about by the
system from its interior. Rather, each collision of a peripheral particle with its neighbor leads to
the increase of the relative velocity between this particle and the other peripheral particle.

Therefore, for a collective consisting of elastically colliding particles, the relative complexity
of the two peripheral particles is monotonically increasing and each change of state again is
irreversible.

The same is true for three-dimensional collectives of free or elastically colliding particles, since the
law of conservation of momentum, which forms the basis for the above argument, is valid along
any axis, so that the particles also expand irreversibly along any such axis and thus ultimately
in three-dimensional space.

The condition of only finitely many particles is essential because infinitely many can also fill
infinite space, so there are no peripheral particles on which to base the simple argument. The
finitely many particles make the system nevertheless a system of finite expansion in spite of its
basically spatial unboundedness.

Summarizing one can say that the asymmetry of time cannot be derived from the classical
equations of motion, but – for free and also for elastically colliding particles – from the asymmetry
of the extensive physical space, and that in this respect already Newton’s first axiom5 implies
the asymmetry of physical processes. For the force-free body moves straight and uniformly and
obeys the local symmetry of space and is thus at the same time subject to its global asymmetry.
It can move away from an observer – a second body – or approach it. But while the one state of
motion, the expansion, is locally possible without the concomitant of a simultaneous contraction,
the other, the contraction, is necessarily connected with an expansion in the surrounding area
due to the law of conservation of momentum.

5https://en.wikipedia.org/wiki/Newton’s_laws_of_motion

https://en.wikipedia.org/wiki/Newton's_laws_of_motion
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Fundamental to the argument above is that there can be no motion from infinite extensive space
into finite space. With finite velocities a movement from the finite into the infinite is just as little
possible. So physics takes place in finite space. And in finite space, expansion is the predominant
state, or any contraction is not possible without simultaneous expansion. A plate, which falls on
the ground, does not collapse, but breaks apart.

5.1.2 Repulsive forces

It is clear that a one-dimensional two-particle system with a repulsive force of unlimited range
and otherwise the same conditions as those of the last section expands exclusively, in position
space and in this case additionally also in velocity space.

The case of short range, such as that between electrically neutral molecules, is only of interest
when the two particles are involved in a larger system with an external environment, so that
the conditions of the last section do not apply and the particles can therefore also move towards
each other. The limited spatial range has also the limited temporal duration of the interaction
(impact) as consequence, so that the impact divides the time into a before and an after with
vanishing relative potential in each case. Therefore, according to the law of conservation of
energy, the kinetic relative energy of the two particles after the collision is the same as before the
collision. However, for the duration of the collision, relative velocity and distance both decrease
initially until they both increase at the reversal point, with the increase in velocity ending when
the original velocity is reached.

The final effect of the impact, however, does not differ in principle from the interaction-free
passage of free particles, whose relative velocity remains unchanged over the whole time of the
passage and whose distance also first shortens to a minimum and then lengthens indefinitely, so
that the impacting two-particle system with respect to its expansion differs from the system of
free particles of the last section in principle only by the changed preconditions which make an
initial contraction and thus the impact – instead of the passage – possible at all.

5.1.3 Attractive forces

It is the attractive forces which can reverse the otherwise strictly monotonous expansion of
free particles in position space into contraction. For the contraction in the phase space, however,
even the attracting natural forces seem to have no meaning, because the decrease of the potential
energy (by contraction in the position space) is accompanied by the increase of the kinetic energy
(by expansion of the velocities). For this purpose, let us again consider a simple one-dimensional
two-particle system with relative distance x, relative velocity v, attractive relative potential
−γx−n and reduced mass6 m. Then, according to the law of conservation of energy, Eqn. 5.26,
the following holds:

m

2
v2 − γx−n = const.

In this case, unlike repulsive forces, it is possible to give the value const. = 0 to the total energy,
so that

v2 · xn =
2γ

m

holds, from where

n log(|x|) + 2 log(|v|) = log

(
2γ

m

)
= const. (5.4)

6https://en.wikipedia.org/wiki/Reduced_mass

https://en.wikipedia.org/wiki/Reduced_mass
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follows. Thus, for this system, if the complexity is defined in terms of a propagation quantity
in phase space by the left-hand side of the above equation, then it is constant in time, so that
the decrease in position space is compensated by the simultaneous increase in velocity space and
vice versa.

Unlike the force-free and the repulsive two-particle system, the two-particle system bound by
attractive forces does not show strict monotonicity, but at least simple monotonicity in phase
space, while in space and velocity space cyclic changes take place, as it can be seen e.g. in the
planetary motion.

Finally, the equation 5.4 sketchily describes also the entropy of a contracting many-body system,
as e.g. in the case of the contraction of matter during star formation. So matter contracts in
position space with simultaneous expansion of the relative velocities, so that the entropy does
not decrease in total in any case.

5.2 Randomness and monotonicity in momentum space

5.2.1 Conservation of momentum and energy

The conservation of momentum and the conservation of energy both follow from Newtons7 de-
composition of the many-particle problem into relations between each two particles, which bring
the two-particle relative states into the center of consideration. The two theorems are valid for
closed physical systems, i.e. just the systems to which also the thesis refers that their entropy
does not decrease. Moreover, the connection between energy and entropy is fundamental, for
which reason Clausius8 deliberately constructed the name entropy in a word-creative way to
accentuate their close connection.

For the above reasons, it is worthwhile to prove the propositions by pointing out the simplicity
of the premises made, which are the following (Cf. Newton’s laws of motion9, Newton’s law of
gravity10 and the Coulomb’s law11):

Relative forces and their addition: The dependence of particles among themselves can be
decomposed into pairwise relations (forces) between each two particles, which for each
particle add up to a total force by simple (vectorial) summation. The force on a particle is
thus the (simple) sum of the forces of all other particles, which these exert on that particle.

Force and acceleration: The force F on a particle results in an acceleration a, which is in-
versely proportional to the inertial mass m of the particle:

m · a = F

Actio=Reactio: The force between every two particles is symmetric and double-referential,
i.e. their sum is zero, and the particles reference each other. From this it follows that the
compound of two and consequently also of many particles – in the same way as according to
Newton’s 1st axiom also each particle for itself alone – does not exert any force on itself (the
compound) and thus, as it is shown by the proof of the law of conservation of momentum
below, the inner total work done is always equal to zero, from which it is directly deduced
that a perpetuum mobile of the first kind12 cannot exist.

7https://en.wikipedia.org/wiki/Isaac_Newton
8https://en.wikipedia.org/wiki/Rudolf_Clausius
9https://en.wikipedia.org/wiki/Newton’s_laws_of_motion

10https://en. wikipedia.org/wiki/Newton’s_law_of_universal_gravity
11https://en.wikipedia.org/wiki/Coulomb’s_law
12https://en.wikipedia.org/wiki/Perpetual_motion
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Minimization of symmetry breaking: The two-particle force acts in the direction of the
symmetry axis, i.e., the line connecting the two particles, and otherwise depends only on
their distance, which is symmetrical with respect to the two particles, but with respect to
space means that there is no further symmetry breaking of space beyond that which exists
anyway as a result of the mere existence of the two particles.

Conservation of momentum follows from the first three postulates above:

Let mi be the mass of the i. particle and aij the acceleration of this particle due to the force
exerted by the j. particle. From Actio = Reactio follows:

miaij +mjaji = 0 (5.5)

Since further for fixed index i the sum
∑

j ̸=i aij = ai is the resulting acceleration of the i. particle
due to the action of all other particles, the following applies

∑
j ̸=i

miaij = miai (5.6)

and analogously for fixed j
∑

i ̸=j mjaji = mjaj , so that from Eqn. 5.5 with summation over all
indices i, j with i ̸= j

0 =
∑
i ̸=j

(miaij+mjaji) =
∑
i

∑
j ̸=i

miaij+
∑
j

∑
i ̸=j

mjaji =
∑
i

miai+
∑
j

mjaj = 2
∑
i

miai (5.7)

follows and thus also:

∑
i

miai = 0 (5.8)

In the isolated many-particle system not only the sum of the relative forces between two particles
disappears, but as a consequence the sum of all forces in total. It is a simple and well-known fact
that from Eqn. 5.8 the law of conservation of momentum follows by integration of the equation.
On the other hand, the conservation of momentum is of such fundamental importance that it is
worth mentioning. So let vi be the velocity, pi = mivi be the momentum of the i. particle and
P the total momentum, then it follows from Eqn. 5.8 by integration:

∑
i

mivi =
∑
i

pi = P = const. (5.9)

One of the essential meanings of the law of conservation of momentum is that it partially de-
couples the state in momentum space from the state in position space, which is in the same way
a feature of the law of conservation of energy, which is now to be proved, for which we need,
beyond the first three postulates, also the assumption of the fourth postulate:

Let ri be the position vector of the i. particle and fij = fji the magnitude of the force of the j.
Particle on the i. particle. Then, according to the fourth postulate above:

miaij = −fij(|ri − rj |)(ri − rj) (5.10)
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Summing these equations over the index j and considering 5.6, the equations of motion follow:

miai = −
∑
j

fij(|ri − rj |)(ri − rj) (5.11)

However, to derive the law of conservation of energy, we stay with Eqn. 5.10. For the longitudinal
motion, i.e., the motion of the particle i in the direction of the connecting axis ri − rj , which –
and only that – is associated with an acceleration by the other particle, follows:

miaijvi = −fij(|ri − rj |)(ri − rj)vi (5.12)

Since because of Actio = Reactio likewise

mjajivj = −fij(|rj − ri|)(rj − ri)vj (5.13)

is valid, it follows by adding the last two equations:

miaijvi +mjajivj = −fij(|ri − rj |)(ri − rj)(vi − vj) (5.14)

For the left part of the left-hand side of 5.14, because of Eqn. 5.6 we get after summation over
the index j:

∑
j ̸=i

miaijvi = miaivi

Analogously, for the right part mjajivj on the left side of the equation 5.14 after summation
over i we get the sum

∑
i ̸=j mjajivj = mjajvj . Thus, for both parts of the left-hand side of

Eqn. 5.14 together:

∑
i<j

(miaijvi+mjajivj) =
1

2

∑
i ̸=j

(miaijvi+mjajivj) =
1

2

∑
i

miaivi +
∑
j

mjajvj

 =
∑
i

miaivi

(5.15)

Thus it follows from Eqn. 5.14

∑
i

miaivi =
∑
i<j

−fij(|ri − rj |)(ri − rj)(vi − vj)

and finally, if ϕij is the primitive of fij , by integration the law of conservation of energy:

∑
i

mi

2
v2
i = −

∑
i<j

ϕij(|ri − rj |) + const. (5.16)

The expression T =
∑

i

mi

2
v2
i is the kinetic energy of the particle system, while the expressions

ϕij(|ri − rj |) reflect the pairwise potential energies of the system. The law of conservation
of energy states that the sum of the kinetic and potential energies is constant in time. The
significant thing about this theorem is not just the constancy in time of two summands, but the
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peculiarity of these summands that one is just a function of velocities and the other is just a
function of relative particle distances, which is ultimately the reason for the definition of kinetic
energy and potential energy, respectively. With the momentum

pi = mivi (5.17)

follows the momentum representation of the theorem:

∑
i

p2
i

2mi
+
∑
i<j

ϕij(|ri − rj |) = const. (5.18)

In 5.18 the potential energy depends exclusively on the relative coordinates ri−rj , into which now
analogously also the kinetic energy shall be brought. Let be the total mass M , total momentum
P, the two-particle mass mij and the two-particle relative momentum pij :

M :=
∑
i

mi (5.19)

P :=
∑
i

pi (5.20)

mij :=
mimj

M
(5.21)

pij := mij(vi − vj) =
mj

M
pi −

mi

M
pj (5.22)

Then applies

pij = −pji (5.23)

and:

∑
i<j

p2
ij

2mij
=
∑
i<j

mij

2
(vi − vj)

2 =
1

2

∑
i,j

mij

2
(v2

i − 2vivj + v2
j )

=
1

2M

∑
i,j

mj
1

2
miv

2
i −

∑
i,j

pipj +
∑
i,j

mi
1

2
mjv

2
j


=
T

2
− P2

2M
+
T

2
= T − P2

2M

The kinetic energy according to Eqn. 5.16 f. thus disassembles into its inner and outer part

T =
∑
i<j

p2
ij

2mij
+

P2

2M
(5.24)

from which for the law of conservation of energy also the representation
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P2

2M
+
∑
i<j

(
p2
ij

2mij
+ ϕij(|ri − rj |)

)
= const. (5.25)

or

P2

2M
+
∑
i<j

(mij

2
(vi − vj)

2 + ϕij(|ri − rj |)
)
= const. (5.26)

follows, so that the total internal energy is the sum of the two-particle relative energies:

p2
ij

2mij
+ ϕij(|ri − rj |) =

mij

2
(vi − vj)

2 + ϕij(|ri − rj |) (5.27)

While the law of conservation of momentum makes a statement about the state of the momen-
tum and its changes which is completely decoupled from the state in position space, the law
of conservation of energy decouples the state of motion from the state in position space only
partially, but shows a second decoupling besides:

• The first decoupling is the decomposition of the constant energy into two parts. The first
part, the kinetic energy, depends exclusively on the relative motions of the particles, the
second part exclusively on the relative distances in position space.

• The second decoupling is the decomposition of the constant energy into the two-particle
relative energies 5.27, which means that the relative state between each two particles i and
j evolves in principle like that of a particle in a potential ϕij , but this evolution is subject
to a continuous perturbation.

Finally, it may be noted that for the conservation of energy the fourth of the postulates listed
at the beginning, which is reflected in Eqn. 5.10 is necessary. It means that the relative forces
between two particles can be only longitudinal, thus have the direction of the connecting axis. On
the other hand, relative transversal forces do not contradict the law of conservation of momentum,
as long as their sum vanishes, as required by Actio = Reactio. Two particles at rest, for example,
would move accelerated in a circle, but the total momentum would remain unchanged at zero.
The angular momentum as well as the kinetic energy would increase steadily. Since for the
rotation the size of the position space, represented e.g. by a closed circle line or the angle interval
[0, 2π), is finite, there could be no function in this space, which would decrease indefinitely to
compensate the indefinitely increasing kinetic energy. Thus, the unboundedness of the extensive
space is in principle also a condition for the validity of the law of conservation of energy, at least
for repulsive forces. The spatial boundedness of physical systems is finally also possible only by
attractive forces.

5.2.2 Relations vs. particles in three-dimensional space

Another criticism against Boltzmanns H-theorem is that the assumption of statistical indepen-
dence of particles prior to a collision anticipates the result, as expressed in the article on the
H-theorem in the section on Loschmidt’s paradox13:

It turns out that this assumption breaks time reversal symmetry in a subtle sense,
and therefore begs the question. Once the particles are allowed to collide, their velocity
directions and positions in fact do become correlated (however, these correlations are

13https://en.wikipedia.org/wiki/H-theorem#Loschmidt’s_paradox

https://en.wikipedia.org/wiki/Ludwig_Boltzmann
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encoded in an extremely complex manner). This shows that an (ongoing) assumption
of independence is not consistent with the underlying particle model.[5]

I assume that in this critique particle model refers to the interaction model given by Newton,
which leads to the deterministic equations of motion 5.11 and to the two conservation laws. In
particular, I would like to examine more closely below the last sentence of the quotation, with
its suggestion that the assumption of permanent independence contradicts the model. Again, it
is not clear at first what the author means by independence in the context of the model, since
explicit independence assumptions are virtually cornerstones of the model (see below). To be
sure, these – explicit – assumptions are not statistical independence. But it is easy to show that
these independence assumptions give room also for statistical independence, so that the random
exchange of momentum and energy among the particles does not contradict the model in any
case. To see this, one can first note that the interaction model decomposes the total state of
a system into two parts, one of which is the state in position space and the other the state in
velocity or momentum space. And the infinitesimal change of one partial state depends on the
other partial state. However, besides this symmetry, there is also a striking asymmetry in the
relation of the two partial states and their change, which consists in the fact that the change of
the position state depends exclusively on the state of the velocities within the system. In fact, the
change of the position state of a particle even depends only on its own state of velocity, while the
change of its velocity is the cumulative effect of a multitude of individual causes (forces) that arise
from other particles within the system, but may also be external to the system. The individual
forces on the right-hand side of Eqn. 5.10 are considered independent of each other and become
parity when summed to a resulting force on the right side of Eqn. 5.11. In this context, it is
now essential that the individual effects aij of the individual forces are also independent of each
other or are considered as such. They are also added in parity to the sum of effects

∑
i aij = ai

of the individual forces. Thus, the effects in the form of the velocity or momentum changes are,
on the one hand, the consequence of their own respective causes and thus depend on them, on
the other hand, each effect as part of all effects on a particle is independent of all other effects,
so that the effects – analogous to the causes – satisfy their own law of independence and parity
accumulation. I.e. this form of independence results, if one abstracts from the compound of
cause and effect, the effect, i.e. the change of momentum. The set of infinitesimal momentum
changes of a particle defined at a point in time (and their algorithmic processing) is independent
of their origin, so it does not contradict the interaction model if there are random momentum
changes as well as caused ones.

One must assume that Boltzmann at least suspected the statistical character of the microcosm.
In this context, the question also arises whether the classical interaction model – with all its
premises – has ever been fully formulated in its entirety. One of these premises is the possibility
of a free choice of a rigid frame of reference. Such a reference frame consists of at least one
reference point, three different directions and one unit of length. The independence of the theory
from the choice of the reference frame and, in particular, of the reference point is expressed by the
requirement that the equations of motion must be invariant to transformations, e.g., the Galilei
transformation14 or the Lorentz transformation15, associated with the change of the reference
frame. The requirement of invariance, however, presupposes that the choice in the particular
case is possible at all with sufficient accuracy and, if made, is stable. This is at least the basic
problem which arises in reality and especially in that of the microcosm, and which is aggravated
with increasing demand for precision and smaller scales. In connection with this, the choice of a
real reference point is only possible under the (self-referential) reference to matter and its state,
i.e. under reference to the broken symmetry of space induced by matter. In other words, a
reference point must be a point physically distinguished by matter, which conversely forms the

14https://en.wikipedia.org/wiki/Galilean_transformation
15https://en.wikipedia.org/wiki/Lorentz_transformation
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basis for the description of the state of this very matter in space, and it must be this for the
duration of the physical process. The change to another reference point requires the readjustment
of the system state. Against this it may be objected that the change is unproblematic because
the state actually and essentially results from the composition of the relative states ri − rj
and vi − vj between each two particles i and j. If this is so, however, it must be noted that,
in proportion, relative states, which are relations between particles, receive little attention in
classical theory except for Newton’s axioms. First of all, the relations of change (Eqn. 5.10),
the forces, belong to the foundation of Newton’s theory, at least in the interaction model. The
summation of these relations, i.e., the transition from Eqn. 5.10 to the condensed equations of
motion 5.11, puts the relative states vij := vi − vj and thus the relations between the particles
into the background and instead the changes ai of the particle states vi and thus the particles
themselves into the foreground. If instead a particle pair (i, j) is granted independence from
third particles, say from a particle k, in addition to the change relation also for its state relation
vij , then the particle states vi, vj and vk must necessarily smear, just as the vertices of a triangle
smear when its side lengths are independently changed and finally reassembled. In the case of
completely independent evolution, even for arbitrarily short durations, the laws of momentum
and conservation of energy would also surely be violated. I.e., in order to satisfy the theorems,
an interaction between particles i and j and the resulting change of state vij for a third particle
k must be accompanied by the adjustment of states vik and vjk, which is a crucial advantage of
the reference frame in relation to which the matching is done implicitly and with uniqueness, in
that vk simply remains unchanged if k itself does not interact.

In a summary, it can be said that the interaction model Newton’s admits two interpretations,
depending on whether one gives priority to the particles or their mutual relations within the
framework of the model. The priority of the particles and their unique state is closely connected
with the choice of a unique and stable reference frame and, in particular, a reference point in
relation to which the definition of the particle in terms of its state – independent of other particles
– is initially possible. If this assumption is omitted, the relations between the particles are in the
foreground, whereby the sharpness of the particle state is necessarily impaired, as will be shown
below.

The laws of conservation of momentum and conservation of energy thereby get a different mean-
ing. They are no longer derived theorems, but postulates for systems which comprise at least
three particles. In particular they are postulates for many-particle systems. The evolution of
state of a two-particle system, on the other hand, is completely determined by the equations of
motion. And even within a many-particle system, two particles are not decorrelated by their
interaction, but – relative to a reference frame – the correlation between each of the two collision
partners and all the other particles is. For the interacting particles themselves, instead of decor-
relation, one must even assume that the interaction takes place, as the quote above expresses it,
on the basis of exact relative information.

The importance of energy – not as a derived quantity, but as the starting point of physical theory
– has a long tradition in physics, evident as early as Lagrange formalism16 and even more so in
Hamiltonian mechanics17.

In this context, reference can also be made to quantum mechanical entanglement18, which is seen
in physics only as a quantum mechanical phenomenon that does not exist in classical mechanics:

The topic of quantum entanglement is at the heart of the disparity between clas-
sical and quantum physics: entanglement is a primary feature of quantum mechanics
lacking in classical mechanics.[8]

16https://en.wikipedia.org/wiki/Lagrangian_mechanics
17https://en.wikipedia.org/wiki/Hamiltonian_mechanics
18https://en.wikipedia.org/wiki/Quantum_entanglement
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However, the basis of entanglement is the conservation laws and the fact that the physical states
of a particle system are relations between the particles, and the particles do not have independent
states. Thus, in quantum mechanics, the importance of relations between particles becomes very
clear. In fact, however, the relations in classical mechanics are no different if one is willing to
give priority to the relations over the particles, which necessarily blurs the particle states.

The importance of the relative states actually already in classical mechanics is first shown by the
version 5.26 for the conservation of energy theorem, which states that the two-particle relative
energies are additive and their sum coincides with the constant energy. Thus, if one assumes that
the relative states are sharp, then so is the energy and so are other state variables and averages,
such as the velocity variance σ2v , for which Eq. 3.44 holds in the same way:

σ2v =
1

N

∑
i

vi −
1

N

∑
j

vj

2

=
1

N2

∑
i<j

(vi − vj)
2

In the following it shall be made clear that the – correlated – interaction between two particles
each is accompanied by the random momentum and energy exchange of each of these particles
with all other particles, at least if one describes the state of the system and its development
in relation to a reference point common for all particles, but at the same time assumes that
the change of state takes place only on the basis of the relative states, the relative equations of
motion 5.10 and the two conservation laws. Thus, we assume that we can compute the changes
in relative states based on a fictitious frame of reference and use the results – then assuming that
the system has no other information besides this relative information – to check the uniqueness
of the change in state.

Accordingly, we assume that the particle i undergoes a change of momentum ∆pi as a result of
the interaction with the particle j and the particle j undergoes the change of momentum

∆pj = −∆pi (5.28)

in relation to a reference frame. For the relative momentum pik and pjk with respect to a third
particle k holds:

∆pik =
(mk

M
(pi +∆pi)−

mi

M
pk

)
−
(mk

M
pi −

mi

M
pk

)
=
mk

M
∆pi

So it follows from Eqn. 5.28 the conservation of momentum for the two-particle momenta pik

and pjk when the particles i and j interact:

∆pjk = −∆pik = −mk

M
∆pi (5.29)

For the interacting particles i and j themselves holds

∆pij =
(mj

M
(pi +∆pi)−

mi

M
(pj +∆pj)

)
−
(mj

M
pi −

mi

M
pj

)
and thus:

∆pij =
mi +mj

M
∆pi (5.30)
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From eqs. 5.28, 5.29 and 5.30 it follows:

∑
k ̸=i

∆pik = ∆pi = −∆pj = −
∑
k ̸=j

∆pjk (5.31)

For the change ∆Tik of the kinetic relative energy of the particles i and k

∆Tik :=
(pik +∆pik)

2

2mik
−

p2
ik

2mik
=

1

mi
∆pipik +

mk

M

∆p2
i

2mi

is valid and thus also:

∆Tik =
mk

M

(
∆pi(vi − vk) +

∆p2
i

2mi

)
(5.32)

Analogously, ∆Tjk is obtained, so that together with Eqn. 5.28

∆Tjk =
mk

M

(
∆pi(vk − vj) +

∆p2
i

2mj

)
(5.33)

and finally

∆Tik +∆Tjk =
mk

M

(
∆pi(vi − vj) +

∆p2
i

2mimj
(mi +mj)

)
(5.34)

follows.

For the interacting particles i and j themselves, because of Eqn. 5.28

∆Tij :=
(pij +∆pij)

2

2mij
−

p2
ij

2mij
=
mi +mj

mij
pij∆pi +

∆p2
i

2mij

(
mi +mj

M

)2

holds and therefore also:

∆Tji = ∆Tij =
mi +mj

M

(
∆pi(vi − vj) +

∆p2
i

2mimj
(mi +mj)

)
(5.35)

This Eqn. together with Eqn. 5.34 and ∆Tii := 0 results in:

∑
k

(∆Tik +∆Tjk) = ∆pi(vi − vj) +
∆p2

i

2mimj
(mi +mj) (5.36)

Now this sum is identical with the change of the kinetic energy of the two interacting particles i
and j in relation to the common reference point, because the following holds true

∆Ti +∆Tj =
(pi +∆pi)

2

2mi
− p2

i

2mi
+

(pj +∆pj)
2

2mj
−

p2
j

2mj
=

pi∆pi

mi
− pj∆pi

mj
+

∆p2
i

2mi
+

∆p2
j

2mj

from where we get:
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∆Ti +∆Tj = ∆pi(vi − vj) +
∆p2

i

2mimj
(mi +mj) (5.37)

In summary one can state: The interaction of two particles i and j with their conservation of
momentum according to Eqn. 5.28 and energy change according to Eqn. 5.37 in relation to a
reference point common to all particles presents itself – in a description omitting the reference
point and that instead is based on the relative information – in such a way that the interaction
of particles i and j also involves all other particles k ̸= i, j. The involvement is such that the
relative momenta pik and pjk behave in their relation to each other like the interacting particles
i and j. Thus, in summary, according to the equations 5.28 to 5.37:

∆pi +∆pj = 0

∆pik +∆pjk = 0

∆Ti +∆Tj = ∆pi(vi − vj) +
∆p2

i

2mimj
(mi +mj)

∆Tij =
mi +mj

M
(∆Ti +∆Tj)

∆Tik +∆Tjk =
mk

M
(∆Ti +∆Tj)

However, besides this agreement, there is also an essential difference which consists in the fact
that the particle interaction is subject to the relative potential ϕij and thus to the correlative
accompaniment by the equations of motion, which, however, does not apply to the implicit
interaction between the relative momenta pik and pjk in three-dimensional space, whose change
∆pik and ∆pjk with six unknowns is therefore subject only to the conservation of momentum
∆pik+∆pjk = 0 and the given energy change ∆Tik+∆Tjk with a total of only four equations, so
that these equations only incompletely specify the momentum change, opening a random window
for the relative motion. This, in turn, is not necessarily equivalent to the relative information
losing its sharpness, because the outcome of a random process, such as that of a throwing
experiment, is very much sharp. On the other hand, there is no unambiguous reconstruction of
the particle states from the changed relative states, because, conversely, unambiguous changes
of the relative states would be derived from the unambiguousness of the particle states and their
changes.

Altogether, the assumption that the relative information is the primary information, or at any
rate the information on the basis of which the interaction process proceeds for the participants
and all those not directly involved, leads to the result that the process definition in the form
of the equations 5.10 is incomplete and therefore the change in the relative states between the
colliding particles on the one side and the other particles on the other side is not unambiguously
determined and, as a consequence, the particle states in relation to a reference frame become
blurred.

Before proceeding further, the following statement by Edwin Thompson Jaynes should be quoted:

https://en.wikipedia.org/wiki/Edwin_Thompson_Jaynes
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Nevertheless, we still see attempts to "explain irreversibility" by searching for
some entropy function that is supposed to be a property of microstate, making the
second law a theorem of dynamics, a consequence of the equations of motion. Such
attempts, dating back to Boltzmann’s paper of 1866, have never succeeded and never
ceased. But they are quite unnecessary; for the second law that Clausius gave us was
not a statement about any property of microstates. The difference in dS on mixing
of like and unlike gases can seem paradoxical only to one, who supposes erroneously,
that entropy is a property of the microstate.[2]

As so far in this chapter, I understand by the term irreversibility in the evolution of a system the
fact that there is a monotonic state function, and that because of this monotonicity the system
cannot, once the function values have changed in the course of time, return to a state prior to
that change:

Position space: In the case of the position space, this function is related to the expansion in
the extensive position space. This expansion is a direct consequence of the equations of
motion, and it does not change the correlation of the particles.

Momentum space: In contrast, the result of this section is that, first, the monotonicity in
momentum space is identical with the monotonic decrease of the momentum correlations
and, second, this – decrease – although not a direct consequence of the equations of motion,
does arise in their context. Thirdly, the decrease of the momentum correlations is an
expansion in the intensive momentum space, since – at least in isolated systems – the
standard deviation of the momentum correlates with the energy and thus the extensive
quantity remains unchanged.
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Chapter 6

Conclusions from the entropy of the
ideal gas

6.1 The equilibrium entropy of the ideal gas

The ideal gas is the mental concept of a physical system of quasi-free particles, in which the
potential energy of the mechanical interaction between the particles is neglected, which does not
mean that collisions between the particles or with a bounding wall are also neglected. Only the
time of the interaction process is set to zero. Thus, we are dealing with hard, completely elastic
collisions which take place in such a short time that the potential energy, without which collisions
are basically impossible, is nevertheless negligible in the energy balance locally and globally, so
that the energy, locally as well as globally and at any time, is exclusively kinetic energy.

The ideal gas is thus the abstraction of a many-particle system with restriction to the kinematics
or the kinetic relations between the particles, which can be interpreted only statistically because
of the large number of particles. However, the statistics is assigned not only an interpretative
role, but rather the significant role. And it is to be assumed that entropy is exactly that, a
descriptive, statistical measure namely of the kinematic state under omission of the question,
how it came to this state and likewise of the question, what can still become from this state by
consideration of the mechanical interactions. The second law of thermodynamics in its general
form, according to which the entropy of an isolated system does not decrease, independent of the
concrete form of the internal mechanical interactions, indicates in this context that there must
be something beyond mechanics, which is common to all physical systems. The past chapters
indicate that it is essentially the structure of space or the kinematic relations between space and
matter, i.e. the distribution of matter and that of its motion in space. Conversely, it is matter
and its motion that gives space its hatching and structure in the first place and thus creates
a reference system for itself. This mutual reference of space and matter resembles the double
reference between the two parts of the double stream1 described by the Schrödinger equation.

Apparently, then, the kinematics is the exclusive focus of entropy, so that the ideal gas is presum-
ably not accidentally the starting point of the mental development to entropy, but an abstraction
which captures the essence of entropy in general.

For the equilibrium entropy2 S of the monatomic ideal gas holds:

S(N,V, T )− S(N,VR, TR) = NkB log

(
V

VR

)
+

3

2
NkB log

(
T

TR

)
(6.1)

1Cf. the section 2.3.2 on the Schrödinger equation
2https://en.wikipedia.org/wiki/Ideal_gas#Entropy
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This equation gives the entropy S = S(N,V, T ) of a macroscopic state in thermodynamic equi-
librium with given particle number N , volume V , and temperature T relative to the entropy
S = S(N,VR, TR) of a reference state N,VR, TR.

6.2 Entropy of the disequilibrium

In the following, we will derive from the entropy of equilibrium a relation for systems which are
not in equilibrium. The only condition is that the entropy S = S(N,V, T ), like the number
of particles and the volume, is itself a linearly extensive state variable.3 Namely, because of
extensivity, for 0 ≤ p

pS(N,V, T ) = S(pN, pV, T ) (6.2)

holds, which is similar to the theorem of intersecting lines for the three edge lengths N,V, S and
pN, pV, pS. Moreover, because of Eqn. 6.1 we get

S(pN, V, T )− S(pN, pV, T ) = pNkB log

(
V

pV

)
= −NkBp log(p)

thus due to Eqn. 6.2 also:

S(pN, V, T ) = pS(N,V, T )−NkBp log(p) (6.3)

If now the whole system of the gas is decomposed into cells Ci of equal size with equal volume
VR, individual particle numbers piN and temperatures Ti and it is assumed that in each cell
thermodynamic equilibrium prevails for itself, i.e. for the entropy S(piN,VR, Ti) of the cell Ci

Eqn. 6.3 holds, viz.

S(piN,VR, Ti) = piS(N,VR, Ti)−NkBpi log(pi)

then because of the extensivity of the entropy, because therefore also the entropy SNE of the
non-equilibrium is equal to the sum of its partial entropies, we get:

SNE =
∑
i

S(piN,VR, Ti) = −NkB
∑

pi log(pi) +
∑
i

piS(N,VR, Ti) (6.4)

Now, for the sum of the right-hand expressions in 6.4 with respect to a common reference
temperature TR, e.g., an average temperature or a minimum temperature, it follows using Eqn.
6.1:

∑
i

piS(N,VR, Ti) = S(N,VR, TR) +
∑
i

piS(N,VR, Ti)− S(N,VR, TR)

= S(N,VR, TR) +
3

2
NkB

∑
i

pi log

(
Ti
TR

)

From Eqn. 6.4 thus becomes:
3Cf. the section 3.5.2 on the problem of extensivity of Shannon entropy
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SNE = S(N,VR, TR)−NkB
∑
i

pi log(pi) +
3

2
NkB

∑
i

pi log

(
Ti
TR

)
(6.5)

In this equation, the index i can be replaced by a double index ij, in which the first – global
– index i represents physically homogeneous cell neighborhoods, each consisting of a number of
neighboring cells with the same physical properties, while the second – local – index j distin-
guishes the cells within each neighborhood. From Eqn. 6.5 then follows:

SNE = S(N,VR, TR)−NkB
∑
i

∑
j

pij log(pij) +
3

2
NkB

∑
i

∑
j

pij log

(
Tij
TR

)
(6.6)

For the entropy of a neighborhood with mi cells Cij , after assuming equal weights p := pij and
equal temperatures Tij , if pi := mip, Vi := miVR, and Ti := Tij , the following two equations
hold:

∑
j

pij log(pij) = mip log(p) = mip log(mip)−mip log

(
miVR
VR

)
= pi log(pi)− pi log

(
Vi
VR

)

∑
j

pij log

(
Tij
TR

)
= pi log

(
Ti
TR

)
From Eqn. 6.6 thus becomes

SNE = S(N,VR, TR)−NkB
∑
i

pi log(pi)+NkB
∑
i

pi log

(
Vi
VR

)
+
3

2
NkB

∑
i

pi log

(
Ti
TR

)
(6.7)

or with Ni := piN :

SNE = S(N,VR, TR)−NkB
∑
i

pi log(pi) +
∑
i

[
NikB log

(
Vi
VR

)
+

3

2
NikB log

(
Ti
TR

)]
(6.8)

And finally, due to Eqn. 6.1:

SNE = S(N,VR, TR)−NkB
∑
i

pi log(pi) +
∑
i

(S(Ni, Vi, Ti)− S(Ni, VR, TR)) (6.9)

Instead of, as just done, in Eqn. 6.5, the cells of homogeneous neighborhoods, i.e., cells with the
same physical properties, can be grouped together, conversely, each cell Ci can also be decom-
posed into several cells Cij not necessarily of the same sizes Vij . Because uniform distribution is
assumed within Ci, the relative particle numbers pij of cells Cij in Ci are pij = Vij/VR. Then,
because of

∑
j pij = 1, the following holds further:

−pi log(pi) = −
∑
j

pipij log(pipij) +
∑
j

pipij log(pij)

= −
∑
j

pipij log(pipij) +
∑
j

pipij log

(
Vij
VR

)
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One could now, at will, for each of the cells Ci in Eqn. 6.5, make corresponding partitionings
into subcells Cij , substitute the above result into Eq. 6.5 and would then obtain the following
result

SNE = S(N,VR, TR)−NkB
∑
ij

pipij log(pipij) +NkB
∑
ij

pipij log

(
Vij
VR

)

+
3

2
NkB

∑
i

pi

∑
j

pij

 log

(
Ti
TR

)
from where with Tij = Ti

SNE = S(N,VR, TR)−NkB
∑
ij

pipij log(pipij) +NkB
∑
ij

pipij log

(
Vij
VR

)

+
3

2
NkB

∑
ij

pipij log

(
Tij
TR

)

follows, so again Eqn. 6.7, which means that in Eqn. 6.7 to 6.9 the ratio Vi/VR can be any, i.e.
greater or less than 1.

Equation 6.9 naturally continues what is already contained in equation 6.1, namely that in the
context of entropy only relative values are of importance. In Eqn. 6.1 these are the ratios V/VR
and T/TR, respectively the logarithmic differences log(V ) − log(VR) and log(T ) − log(TR). In
Eqn. 6.9, it is the entropy itself with the reference entropies S(N,VR, TR) and S(Ni, VR, TR) and
the differences SNE − S(N,VR, TR) and S(Ni, Vi, Ti) − S(Ni, VR, TR), respectively. Taking this
into account, according to this equation, the non-equilibrium entropy is equal to the sum of local
equilibrium entropies plus the globalization complexity4.

In any case, the equilibrium entropy S(N,VR, TR), which serves as a reference value, is obviously
of outstanding importance, i.e. the entropy of a system whose N particles are gathered in the
small volume VR at a small temperature TR, both of which do not have to be small at all in
physical and mathematical respect, but for the purpose of a better view. For then the reference
entropy S(N,VR, TR), as incidentally also each of the entropies S(Ni, VR, TR), is the entropy of a
concentrated particle collective, contracted both in position space and in the momentum space.
In contrast, the differences S(Ni, Vi, Ti) − S(Ni, VR, TR) are the local entropy increases due to
local propagation, while the globalization complexity −NkB

∑
i pi log(pi) can only be assigned

to the global system, which is also shown by the fact that while the absolute particle number Npi
in cell Ci is defined independently of the other cells, the relative particle number pi in log(pi) is
not.

Special cases:

• If the system consists of only one cell with volume V = VR and temperature T = TR, then
6.7 becomes:

SNE = S(N,V, T )

By construction, the system is then in equilibrium and therefore the entropy is also identical
to the equilibrium entropy.

4Cf. definition in section 3.3.2
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• If the system is again at equilibrium, but partitioned into M cells with sizes Vi = VR and
temperatures Ti = TR, then 6.7 reduces to:

SNE = S(N,VR, TR)−NkB
∑
i

pi log(pi) = S(N,VR, TR) +NkB log(M)

SNE in this case is again itself an equilibrium entropy. There are no local expansions, only
the global expansion with complexity NkB log(M).

• In the case where the distribution of particles among cells is constant in time, the time
differential of the total entropy is according to Eqn. 6.7:

dSNE =
3

2
NkB

∑
i

pi
dTi
Ti

=
∑
i

d

(
3

2
piNkBTi

)
Ti

=
∑
i

δQi

Ti
(6.10)

Here we assume that we are dealing with a monatomic ideal gas with internal energy
Ei = 3/2(piNkBTi) of cell Ci, whose change dEi we identify with the net heat flux δQi

from section 2.2.

Using the abbreviations vi := Vi/VR, ϱi := pi/vi (see below), and ti := Ti/TR, Eqn. 6.7 can also
be written as follows:

SNE = S(N,VR, TR) +NkB

(
−
∑
i

pi log(pi) +
∑
i

pi log(vi) +
3

2

∑
i

pi log(ti)

)
(6.11)

https://en.wikipedia.org/wiki/Ideal_gas#Internal_energy
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Chapter 7

Density entropy and U-entropy

7.1 Definition and normalization

In Eqn. 6.7, the two middle summands correspond to the components of the density entropy
defined in Eqn. 3.35, i.e., the Shannon entropy and the complexity of the continuous space,
respectively. Correspondingly, we also define here by omitting the particle number N and the
Boltzmann constant kB:

SD = −
n∑

i=1

pi log(pi) +
∑
i

pi log

(
Vi
VR

)
(7.1)

And as in the estimation 3.36, using Jensen’s inequality 3.30, if V :=
∑
Vi is the total volume

of the system, it follows equally:

SD ≤ log

(
V

VR

)
(7.2)

If we identify the reference volume VR with the total volume V and set

yi := pi

xi :=
Vi
V

then Eqn. 7.1 – again together with Jensen’s inequality – becomes:

SD(1) = −
n∑

i=1

yi log

(
yi
xi

)
≤ 0 (7.3)

With definition of the relative density1

ρi :=
yi
xi

follows:

SD(1) = −
n∑

i=1

yi log (ρi) = −
n∑

i=1

xiρi log (ρi) ≤ 0 (7.4)

1Distinction from absolute density ϱ is possible only in section 7.3 in the context of partitioning hierarchy
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This global entropy is never positive and vanishes exactly when all densities ρi are equal. The
transition from the sum to the integral leads again to the differential entropy2

SD(1) = −
∫
ϱ(r) log (ϱ(r)) d3r ≤ 0 (7.5)

where now we have to integrate over a region with volume 1, and instead of the relative density
ρ necessarily the absolute density ϱ defined in section 7.3 must appear in the integral.

By normalizing the volume to 1 and not taking into account the absolute number of particles,
the global density entropy, like the Shannon entropy3, becomes a self-referential description of
quantity, since it lacks reference to an other, the external world, and instead reflects exclusively
internal relations.

7.2 Change to U-entropy

The definition of the global density entropy according to Eqn. 7.1 places the uniform distribution
in the center of consideration, insofar as the entropy of an disequilibrium is always smaller than
the upper bound set by the equilibrium. Increasing disequilibrium is thus subject to negative
monotonicity, and equating the reference volume VR with the total volume V in the previous
section makes the entropy of equilibrium a zero line, in relation to which the entropy of a
disequilibrium as is given by Eqn. 7.3 is always negative. Now, positive monotonicity is, first,
more pleasant and, second, the disequilibrium is more interesting than the equilibrium, so it
makes sense to associate positive monotonicity with increasing disequilibrium. Accordingly, we
define the disequilibrium density UD entropy (with the U as in un):

UD = −SD =
∑
i

pi log(pi)−
∑
i

pi log

(
Vi
VR

)
(7.6)

With VR = V , the entropy of equilibrium again sets a zero line, but relative to which the entropy
of any disequilibrium is now positive. From eqs. 7.3 to 7.5 becomes:

UD(1) =
∑
i

yi log

(
yi
xi

)
≥ 0 (7.7)

UD(1) =
∑
i

yi log (ρi) =
∑
i

xiρi log (ρi) ≥ 0 (7.8)

UD(1) =

∫
ϱ(r) log (ϱ(r)) d3r ≥ 0 (7.9)

where again we have to integrate over a region with volume 1.

U-entropy, unlike density entropy, is a contraction measure that measures the magnitude of the
mean deviation of density from the mean 1.

2Cf. section 3.4.4
3Cf. the section 3.5.2 on the self-reference of Shannon entropy
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7.3 Monotonicity and recursive partitioning

In Eqn. 7.7, xi is the relative size of a cell Ci in position space and yi is the relative particle
share of this cell in relation to the entire system. Now, if this cell is further partitioned into
subcells Cij with – in respect to cell Ci – relative cell sizes xij and particle shares yij , so that∑

j xij =
∑

j yij = 1, then the shares of cells Cij relative to the whole system are equal to xi ·xij
and yi ·yij . Therefore, for the cumulative share of the entropy of all subcells Cij of cell Ci relative
to the whole system holds:

∑
j

yiyij log

(
yiyij
xixij

)
= yi log

(
yi
xi

)
+ yi

∑
j

yij log

(
yij
xij

)
(7.10)

Thus, the partitioning of cell Ci and its replacement by its subcells Cij implies the global entropy
increase

yi
∑
j

yij log

(
yij
xij

)
which is formally equal to the entropy itself according to Eqn. 7.7 except for the factor yi. If
all cells Ci are partitioned in this way into subcells Cij and the partitioning is finally continued
recursively, we obtain analogous to the Shannon entropy in Eqn. 3.13 to 3.15 for the U-entropy:

UD(1) =
∑
i

yi

log

(
yi
xi

)
+
∑
j

yij

(
log

(
yij
xij

)
+
∑
k

yijk

(
log

(
yijk
xijk

)
+ . . .

)) (7.11)

=
∑
i

yi log

(
yi
xi

)∑
ij

yiyij log

(
yiyij
xixij

)∑
ijk

yiyijyijk log

(
yiyijyijk
xixijxijk

)
+ · · · (7.12)

=
∑
ijk···

yiyijyijk · · · log
(
yiyijyijk
xixijxijk

· · ·
)

(7.13)

As for the Shannon entropy, we give the levels of the resulting hierarchy the designation scale
and number them down the scale. The undivided whole system thus receives the scale 0, its
division described by the index i above, i.e. the set of cells Ci, the scale 1, the set of cells Cij

the scale 2, and so on. So, for simplicity, we express smaller scales – contradictorily – by larger
scale values n.

With the relative densities
ρi :=

yi
xi
, ρij :=

yij
xij

, · · · (7.14)

and the absolute densities
ϱi := ρi, ϱij := ρiρij , · · · (7.15)

is obtained for the first and the third of the above equations:

UD(1) =
∑
i

xi

ρi log(ρi) +∑
j

xij

(
ρij log(ρij) +

∑
k

xijk (ρijk log(ρijk) + . . . )

) (7.16)

=
∑
ijk···

xixijxijk · · · ρiρijρijk · · · log(ρiρijρijk · · · ) (7.17)

=
∑
ijk···

xixijxijk · · · ϱijk··· log(ϱijk···) (7.18)
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Thus, U-entropy behaves like Shannon entropy under recursive partitioning. In particular, it is
true for both that deep and flat entropy are the same, as shown by the above equations 7.16 and
7.18, and as already expressed for Shannon entropy in section 3.3.3. Therefore, to look at the
change characteristic of the entropy downscale, i.e., to determine what happens when the global
resolution is increased again by cell division, it is sufficient, as in Eqn. 7.10 above, to assume
a flat partitioning representing a complete partitioning hierarchy up to and including a scale n.
The global entropy increase ∆UD(1, n) from a scale n − 1 to scale n is then according to that
equation:

∆UD(1, n) =
∑
i

yi

∑
j

yij log

(
yij
xij

) ≥ 0 (7.19)

Therefore, it is the mean of the local entropies
∑
yij log(yij/xij) and thus, in any case, also ≥ 0,

so that the U-entropy UD(1, n) is a monotonically increasing function of scale n:

UD(1, 0) = 0

UD(1, n) = UD(1, n− 1) + ∆UD(n) ≥ UD(1, n− 1) (7.20)

7.4 Local non-negative entropy

According to 7.20, the global U-entropy increases monotonically as a function of scale, and even
the division of each cell Ci has a non-negative contribution Ui because – except for a positive
factor – according to Eqn. 7.19, it too is of the form:

Ui =
∑
j

yij log

(
yij
xij

)
≥ 0 (7.21)

However, the summands of this sum, the partial entropies Uij := yij log(yij/xij), are not all ≥ 0.
On the contrary, it holds

Ui > 0⇔ ∃j : Uij < 0 (7.22)

which is because of Uij < 0⇔ log(ρij) < 0⇔ ρij < 1 and with ρij = yij/xij equivalent to:

Ui > 0⇔ ∃j : ρij < 1 (7.23)

The proof of this is as follows: By Jensen’s inequality 3.30 f., Ui is zero exactly if all densities
yij/xij are equal, which in turn is the case exactly if they are all equal to 1. Indeed, let ρ be the
same value for all densities, then:

1 =
∑
j

xij
yij
xij

=
∑
j

xijρ = ρ

Thus, the implication of Jensen’s inequality is also the equivalence

Ui = 0⇔ ∀j : ρij = 1

and thus also its contraposition:
Ui > 0⇔ ∃j : ρij ̸= 1
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This finally is equivalent to the assertion 7.23 if also the following relation holds:

∃j : ρij ̸= 1⇔ ∃j : ρij < 1

Of this relation only the implication

∃j : ρij ̸= 1⇒ ∃j : ρij < 1

or its contraposition
∀j : ρij ≥ 1⇒ ∀j : ρij = 1

is to prove: To do this, we assume that for a density ρik > 1 holds. But then, together with the
implication premise, the contradiction

1 =
∑
j

xij
yij
xij

=
∑
j ̸=k

xijρij + xikρik >
∑
j ̸=k

xij + xik = 1

follows.

Summarizing up to this point, 7.22 holds with the statement that a growth

UD(1, n+ 1) > UD(1, n)

of the global entropy4 is necessarily associated with the emergence of locally negative entropies.

Now one can adapt the definition of entropy according to Eqn. 7.7 by a modification so that
the partial entropy Ui of a cell remains unchanged in the sum, but even each summand is non-
negative. Namely, it holds:

UD(1) =
∑
i

(
yi log

(
yi
xi

)
− (yi − xi)

)
(7.24)

The sum remains unchanged because
∑

i(yi − xi) = 0. Correspondingly, 7.21, 7.8, and 7.9 hold
for the equations:

Ui =
∑
j

(
yij log

(
yij
xij

)
− (yij − xij)

)
=
∑
j

xij(ρij log(ρij)− (ρij − 1)) (7.25)

UD(1) =
∑
i

xiϱi log (ϱi) =
∑
i

xi(ϱi log (ϱi)− (ϱi − 1)) (7.26)

UD(1) =

∫
ϱ log (ϱ) d3r =

∫
(ϱ log (ϱ)− (ϱ− 1)) d3r (7.27)

The non-negativity of the summands xi(ρi log (ρi) − (ρi − 1)) follows from the non-negativity
of the function x 7→ x log(x) − (x − 1), because this has value 0 at x = 1 and, because it is a
primitive of the logarithm x 7→ log(x), it falls monotonically for x < 0 and rises monotonically
for x > 0.

The modification of the entropy definition can be seen by contrasting the graphs of the two
entropy functions x 7→ x log(x) and x 7→ x log(x)− (x− 1):

4According to inequality 7.20
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Figure 7.1: The entropy functions x 7→ x log(x) (yellow) und x 7→ x log(x)− (x− 1) (green)

For a path An := C0C1C2 · · ·Cn of a partitioning hierarchy, let x(An) be the volume of cell Cn

and Sn be the set of all paths of the n-th scale, which by section 7.5.1 bijectively maps the set
of cells of this scale. With the densities ρi of the cells Ci relative respectively to the cell Ci−1,
let be further the partially negative local entropy

U−(An) := ρ1ρ2 · · · ρn log(ρ1ρ2 · · · ρn) (7.28)

and the non-negative local entropy

U+(An) := ρ1ρ2 · · · ρn log(ρ1ρ2 · · · ρn)− (ρ1ρ2 · · · ρn − 1) (7.29)

of the path An and the cell Cn, respectively. Thus

∑
An∈Sn

x(An) = 1 (7.30)

UD(1, n) =
∑

An∈Sn

x(An)U−(An) =
∑

An∈Sn

x(An)U+(An) (7.31)

such that the global entropy UD(1, n) is the average of the local entropies U−(An) or U+(An)
and in the limit n→∞ the following relations hold:

1 = lim
n→∞

∑
An∈Sn

x(An) (7.32)

UD(1) = lim
n→∞

∑
An∈Sn

x(An)U−(An) (7.33)

UD(1) = lim
n→∞

∑
An∈Sn

x(An)U+(An) (7.34)

The meaning of the local U+-entropy is that it shares the typical feature of the global U-entropy,
namely non-negativity, with the latter, so that through it a non-negative entropy can be assigned
to each cell or point in space, whose sum or integral coincides with the global entropy.
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7.5 Rational and irrational paths

7.5.1 General definition of paths

Let an infinite partitioning hierarchy in space be given, such as that implied by table 2.6 in section
2.2.2, in which each formed subcell is itself decomposed into at least two and at most finitely
many subcells. We can also call the hierarchy a cell hierarchy, in which the overall system is the
root of the tree formed by the hierarchy. We can further, starting at the root cell, recursively
select exactly one subcell at a time to define a finite or infinite path through the hierarchy.
Thus, a finite path An of length n is a sequence An := C0C1C2 · · ·Cn of cells such that C0 is the
entire system, C1 is a subcell of the entire system defined by the hierarchy, C2 is a subcell of C1,
and so on. Correspondingly, an infinite path A is an infinite sequence A := C0C1C2 · · · of cells
recursively selected in this way.

A finite path An is also an address of its last cell Cn, so we can identify the finite paths and the
cells of the hierarchy with each other. For example, in table 2.6, path C1C12C121 is the address
of cell C121. Moreover, for path An, index n is identical to scale n, the n-th level of the hierarchy.

Finally, by analogy, we can define local paths that do not start with the entire system, but with
any cell C of the hierarchy. Local paths are thus defined relative to a cell C.

7.5.2 Recursive procedure of choice

Definition

A recursive procedure of choice – or function of choice – for an infinite partitioning hierarchy is
a mapping that assigns to each cell C of the hierarchy one of its subcells – as a unique successor.

In the context of density entropy, a procedure of choice can be defined in the following way: Let
C be any cell of the hierarchy and

A(C, n)

be the set of all local paths An := CC1C2 · · ·Cn of length n relative to C. Let further ρ1, ρ2, · · · ρn
be the relative densities of cells C1, C2 · · · along such a path An and

ρ(An) := ρ1ρ2 · · · ρn

be the density of the path relative to C.

Further, we fix an ε1 > 0 uniform for the procedure of choice and first choose among all finite
local paths relative to C a path A with shortest length n such that

∀B ∈ A(C, n) : ρ(B) + ε1 < ρ(A)

is valid.

Thus, A is the shortest path relative to the cell C, which is sufficiently distinct from all other
paths of the same length due to its greater density.

To conclude the definition of the procedure of choice for the successor of cell C: With the unique
selection of a path CC1C2 · · ·Cn, C1 can now be assigned – also uniquely – to cell C.

The procedure is not defined for a cell exactly if the described selection of a shortest path with
greatest density is not possible, which in turn is exactly the case if the density in the cell is
uniformly distributed.
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Alternative definition

In an alternative definition for a recursive selection procedure based on spacial density fluctua-
tions, we require that for each cell already one of its (immediate) subcells has a sufficiently larger
density than the remaining (immediate) subcells. The shortest path required above then always
has length 1.

The definition is a tightening, which at first is not realistic, but then is equivalent to the first one,
if one does not allow any arbitrary partitioning hierarchy, but only those whose cells are resolved
by their (immediate) subcells to such an extent that one of them is sufficiently distinguished
by its density. Conversely, for a given hierarchy, this means that it is redefined for a cell C, if
necessary, and its decomposition into subcells is refined until one of the newly emerging subcells
can finally be selected with sufficient distinctness on the basis of its high density. The adjustment
of the hierarchy is possible after the first definition of the selection procedure exactly when this
in turn defines a selection for C.

Thus, according to this alternative definition, for each cell C there exists a subcell Cm with a
largest density ρm relative to C, such that for all remaining subcells Ci with i ̸= m and their
densities ρi relative to C:

ρi + ε1 < ρm (7.35)

Furthermore, we assume that the relative volume xm of the cells Cm does not become too large.
That is, there is a ε2 > 0 such that for all cells with largest relative density:

xm < 1− ε2 (7.36)

The two conditions for ρm and xm have – including the lower bounds ε1 and ε2 – no meaning
for finite scales, for which namely the weaker requirements ρi < ρm and xm < 1 are sufficient.
But they have their meaning if the limit to infinite scales is taken. Here they correspond to a
reversal of the continuity principle5, according to which what is true of the finite is also true
of the infinite. The inversion consists in turning the principle into a requirement, so that what
holds in the finite is required to also hold in the infinite, namely, the uniqueness when choosing
a subcell as a result of its unambiguous distinguishability from the other subcells by its greatest
density. For otherwise the relative densities along an infinite path C0C1C2 · · ·Cn, Cn+1 · · · can
evolve in such a way that, although for each cell Cn the choice of the successor cell Cn+1 is
unique, this does not hold for the limit n→∞.

Consequences for the largest relative density

Let a partitioning hierarchy be given with a procedure of choice according to the alternative
definition above. For a cell C of the hierarchy, let ρm be the largest density relative to C, as in
the last section. Using ε1 and ε2, also introduced in the last section, and

ϵ := ε1ε2

then applies to all cells in the hierarchy:

ρm > 1 + ϵ (7.37)

To show this, let any cell C be given and let ρ1, ρ2, ρ3 · · · be the densities of the subcells relative
to C, and of these again let ρm be the largest. By definition of the procedure, we have:

∀i ̸= m : ρi < ρm − ε1
5https://en.wikipedia.org/wiki/Law_of_continuity

https://en.wikipedia.org/wiki/Law_of_continuity
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Because
∑

i ̸=m xi = 1− xm, it then follows for the density mean:

1 =
∑
i

xi
yi
xi

=
∑
i

xiρi =
∑
i ̸=m

xiρi + xmρm < (1− xm)(ρm − ε1) + xmρm = ρm − ε1(1− xm)

from which, together with the volume constraint xm < 1− ε2 established in the last section, we
finally obtain the assertion:

ρm > 1 + ε1(1− xm) > 1 + ε1ε2

7.5.3 Rational paths

Definition

Let be given an infinite partitioning hierarchy together with a procedure of choice. Rational
paths are defined by assigning to each finite path An := C0C1C2 · · ·Cn an infinite – rational
path A – as follows:

• An is part of the rational path A, so A = C0C1C2 · · ·CnCn+1Cn+2 · · · .

• For all i > n, Ci is the cell assigned to cell Ci−1 by the procedure of choice.

Of the two – equivalent – procedures of choice defined above, we choose the alternative definition
because of its simplicity. Thus, the uniquely determined subcell with the largest relative density
is selected in each case. For each rational path A = C0C1C2 · · · there then exists a smallest
index n ≥ 0 such that either n = 0 or Cn does not have the largest density, but all cells Ci for
i > n do. I call the local path CnCn+1Cn+2 · · · the period of the rational path A, because the
set {Cn, Cn+1, Cn+2, · · · } forms an equivalence class within the set of all cells of the hierarchy,
such that a common characteristic is given to the elements of the class which distinguishes them
from all other cells. Namely, the periods define equivalence classes because two periods are either
identical or their sets are disjoint, and each cell of the hierarchy lies on the period of a rational
path, because each cell also marks the end of a finite path, and, starting from this path, it
defines a rational path whose period contains the said cell. Altogether, then, the periods of the
rational paths define in their entirety a decomposition of the set of all cells of the hierarchy into
equivalence classes.

Growth of absolute density

The relative densities ρn+1, ρn+2, · · · of a rational path along its period CnCn+1Cn+2 · · · are
bounded below by a value 1 + ϵ > 1 according to the inequality 7.37. Thus, for m ≥ n+ 1:

ρm ≥ 1 + ϵ

Therefore, the absolute densities ϱn+1, ϱn+2, · · · grow exponentially with the beginning of the
period from the n+ 1-th scale, so that for m ≥ n+ 1 holds:

ϱn+m ≥ ρ1ρ2 · · · ρn(1 + ϵ)m (7.38)

From this follows in particular the infinity of the absolute density ϱ of a rational path:

ϱ = lim
n→∞

ϱn =∞ (7.39)

Moreover, the density is also infinite if ϵ is an infinitesimal in the sense defined by Eqn. 3.26 f.,
because it holds

(1 + ϵ)m > 1 + ϵ ·m
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so that with ϵ := ϵ0, ϵ1, ϵ2 · · · it follows according to the definition of the infinitesimal:

ϱ ≥ ρ1ρ2 · · · ρn lim
m→∞

ϵ ·m = ρ1ρ2 · · · ρn lim
m→∞

ϵm ·m =∞

7.5.4 Irrational paths

An infinite path is called irrational if it is not rational.

However, it is not directly apparent that they exist at all. But their existence follows from that of
the rational paths, as will become clear shortly. Irrational paths are exclusively other-referential.
That means, they are not only defined – as just happened above – as a complementary set
with reference to the set of rational paths, but the definition of each concrete irrational path
takes place exclusively by reference to rational paths, while rational paths with the beginning
of their period reference only themselves, because they carry the characteristic, which uniquely
defines them and by which they can also be identified, continuously before themselves. The
characteristic of an irrational path, on the other hand, is that it has no infinite period of cells,
each with maximum density. Instead, for no cell of the hierarchy – in its potential as a cell
on irrational paths – any relative density, from the smallest to the largest, is excluded, which,
in contrast to rational paths, is an expression of a statistical symmetry on the set of irrational
paths.

To describe this in another way: Since the periods of the rational paths include all cells of the
hierarchy, every cell of an irrational path A also lies on the period of a rational path B, and A,
starting from this cell, can follow B arbitrarily far down the scale, but must eventually separate
from B on a finite scale, because otherwise A would also be rational and even identical with B.
It follows that an irrational path accompanies infinitely many rational paths on finite sections
each, and thus references them. The length of each section is ≥ 1, it is equal to 1 in case of
immediate change, i.e. if A leaves the path B already at the beginning of the period of B. The
probability for immediate change is equal to 1/2 in the case of a binary partitioning hierarchy.
The references to infinitely many rational paths, in turn, also imply an infinitely frequent change
of reference, and each change is associated with the selection of a subcell whose relative density is
not maximal, but for which there are no constraints besides. In fact, there is even no restriction
for the selection of the subsequent cell from the subcells of a cell along an irrational path, because
the path can also follow any rational path even arbitrarily far, so that there is also no restriction
for the relative density following in each case.

7.5.5 Cardinality of the sets of irrational and rational paths

From what has been said, the size relation between the two complementary sets, the rational
paths on the one hand and the irrational paths on the other hand, also follows. Namely, for
any cell C of the hierarchy with m(C) subcells, it holds that it is either the beginning or the
continuation of the period of exactly one rational path, and the continuation of this period occurs
by selecting exactly one subcell of C as the succeeding cell in accordance with the procedure of
choice, while irrational paths through C can lead through any of the m(C) subcells. One can use
this relation to count the paths, starting at the root cell, down the scale, or to bring the growth
of these numbers into the said size relation of the irrational to the rational paths, because there
is a twofold exponential growth6:

Rational paths: The number of rational paths grows exponentially because – initially – while
each cell C is the beginning or continuation of only one rational path by selecting exactly
one subcell, then all the remaining of the m(C) subcells are in turn the beginning of a
rational path.

6The twofold exponential relation e−n2

= (e−n)n also characterizes the normal distribution
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Irrational paths: The number of irrational paths grows exponentially in relation to the number
of rational paths, because for the continuation of each rational path by selecting exactly
one from the m(C) subcells instead m(C) irrational paths emerge from the cell C.

Finally, it follows for the magnitude relation: the cardinality7 of the irrational paths relates to
the cardinality of the rational paths as the latter does to the number 1.

This corresponds to what connects the cardinalities of the irrational and rational numbers. The
rational numbers are first defined in mathematics by the fractions m/n, for which m and n are
natural numbers. That the fractions can be mapped bijectively onto the rational paths defined
here, and thus subjected to a common count together with the irrational paths, will be proved in
the second volume on the continuum. If, as usual, the cardinality of the rational numbers, which
coincides with that of the natural numbers N,8 is denoted by ℵ0 and that of the continuum, i.e.
the irrational and real numbers, by c = ℵ1, then the above relations correspond to the relation:

1 < ℵ0 < c

7.5.6 Double reference of space and matter

The definition of rational paths given in section 7.5.3 is initially a mathematical one, but it
is then extended to a physical definition based on spacial density fluctuations of matter. The
question must be answered what is the meaning of the definition in the context of physics:

Usually, even in physics, we assume that space simply is – and matter is distributed in it, so that
matter references space and not vice versa space references matter. An exception is the theory
of relativity, which considers space, i.e. its curvature, as a function of the distribution of matter.
However, this dualism unfolds only on large scales and with large masses. It is with it also a
phenomenon of the extensive space. Likewise the finiteness of the speed of light belongs to the
domain of the extensive space. Independently however of the scale, there is no location without
reference to the distribution of matter, on large scales for example that of the fixed stars in the
universe. On the scale in which we move, it is mountains, clouds, trees, houses, walls of houses,
door frames, table tops, edges, markings on length scales or the paper, and so on. Now there is
no reason to assume that this dependence should not exist on small scales. At most, one could
object that the need to refer to matter associated with addressing in space is an anthropogenic
problem alone. One would assume with it that also the empty space has the possibility to address
a point of space or also a large or small environment. But this is contradicted by the symmetry
of the empty space. I.e. it requires a symmetry breaking by selection of at least one point, in
relation to which a location specification is not only possible, but is defined at all. This symmetry
breaking is according to experience the consequence of the non-uniformly distributed matter in
the position space. It is not the consequence of electromagnetic waves, which also break the
symmetry of space, but which do not set thereby a reference point.

Altogether, it is therefore reasonable to assume that the hatching given to space by the distri-
bution of matter is the basis of the definition of position and thus the basis of addressing in
space also for the laws of physics, so that space and matter fundamentally define each other
in a double-referential dependence. Now the addressing in space can be extensive or intensive.
The extensive addressing e.g. in connection with a Cartesian coordinate system has always an
intensive part, as soon as the demanded accuracy of the addressing is larger than the fixed unit
of length allows. The intensive addressing – for an extensively finite system – starts at the total
system and continues by recursive division. As long as the continuation of the division is finite,
the addressing remains inexact. Therefore, if the dynamics of physics in the context of Newtonian

7https://en.wikipedia.org/wiki/Cardinality
8https://proofwiki.org/wiki/Rational_Numbers_are_Countably_Infinite

https://en.wikipedia.org/wiki/Cardinality
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mechanics or quantum mechanics requires exact addressing for e.g. the Schrödinger equation,
one must assume that the division is completed by taking the limit to infinite resolution, which
only transforms the arbitrariness and indeterminacy of the finite division into definiteness.

Addressing in or on the basis of a partitioning hierarchy is only possible if the paths in the
hierarchy are distinguishable, which finally are the addresses. For this again, as the preceding
sections have shown, the definition of a procedure of choice for the selection of exactly one subcell
to each cell is sufficient, because from it follows the definition and existence of the rational and
then of the irrational paths, whose union forms the set of all paths and thus the set of all
addresses, incidentally also that of the finite paths and cells, because each rational path starts in
exactly one cell and vice versa exactly one rational path starts in each cell. Altogether, therefore,
especially the existence and meaning of the rational paths is justified by the demand of certain
addressing in space. Finally, the fact that the distribution of matter in space is the basis for the
procedure of choice reflects one part of the double reference between the two mentioned above.
In this context, the requirements 7.35 and 7.36 guarantee the distinctness of the rational paths
and thus that of all infinite paths. Therefore, the precise addressing in space is possible if there
are sufficiently strong density fluctuations even at infinite scales.

7.6 Convergence and boundedness

7.6.1 Meaning of convergence and boundedness

The inequality 7.20 shows that the U-entropy UD(1, n) grows monotonically as a function of the
scale n of a partitioning hierarchy, and therefore the convergence of the U-entropy is insolubly
related to its growth. That is, it converges exactly when it is bounded9.

In this context, the study of density entropy in section 3.5.3 with the result – for a partitioning
hierarchy equal to the dual system – in inequality 3.73 shows that density entropy has the po-
tential to fall logarithmically infinitely, just as Shannon entropy grows logarithmically infinitely.
Since the U-entropy arises from the normalized density entropy by sign reversal, the U-entropy
can also grow infinitely and is similar to the Shannon entropy in this respect.

Therefore, everything indicates that bounded growth of entropy is crucial for its theoretical
meaning, because without boundedness and thus without convergence, entropy is not only inde-
terminate, but undefined, which calls the concept of entropy as a whole into question.

7.6.2 Boundedness due to finiteness of hierarchy

The simplest way to bring about boundedness is to assume a smallest scale below which there
is only uniformly distributed density, which corresponds to the coarse graining mentioned in
section 3.5.2 in the context of Gibbs entropy, but contradicts the precise position determination
by exact addresses as demanded in section 7.5.6.

For the U-entropy given by Eq. 7.10

yi log

(
yi
xi

)
+ yi

∑
j

yij log

(
yij
xij

)

this means that if the index i marks the cells Ci of a flat partitioning at the smallest scale, the
entropies ∑

j

yij log

(
yij
xij

)
9https://en.wikipedia.org/wiki/Monotone_convergence_theorem

https://en.wikipedia.org/wiki/Monotone_convergence_theorem
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vanish for all cells Ci regardless of their decomposition into subcells Cij .

In consequence of such finiteness, space is discrete with all further consequences of indeterminacy
arising from it.

An argumentation according to which a smallest scale is set in phase space by Heisenberg’s
uncertainty principle means that the density entropy and the motion entropy are not only related
in their temporal evolution, but are also only defined together. So there would not be then the
definition of a density entropy separate from that of the entropy of motion, but only one. Also
the uncertainty relation is valid for a single particles and not for the cumulative occupation
probabilities yi of a particle collective.

7.6.3 Boundedness due to bounded absolute density

Another simple way to limit entropy growth is to strictly limit the absolute density for all paths.
For this the mean property of entropy is the foundation. Namely, if ϱmax is an upper bound
on the absolute density, then according to Eqn. 7.8 for the flat partition corresponding to a
partitioning hierarchy holds:

UD(1) =
∑
i

yi log

(
yi
xi

)
≤
∑
i

yi log(ϱmax) = log(ϱmax) (7.40)

However, this strict limitation on the absolute density is incompatible with the infinite density
of rational paths according to equation 7.39 and thus contradicts the existence of uniquely dis-
tinguishable infinite paths, insofar as they are defined on the basis of density fluctuations and a
procedure of choice according to section 7.5.2.

On the other hand, the condition seems – at first sight – to allow quite well fluctuations of
the relative densities of finite size even in the limit to infinite scales. For an infinite path with
relative densities ρ1, ρ2, ρ3 · · · , the sequence of absolute densities with values ϱn = ρ1ρ2ρ3 · · · ρn
is – in accordance with the condition 7.40 – not necessarily required to converge, but only be
bounded and satisfy the condition ϱn ≤ ϱmax, for which convergence is not mandatory. The
simple extreme case, however, where for each cell among its subcells there is one whose relative
density does not fall below a certain globally valid value 1+ ϵ, shows that the condition does set
limits to such density fluctuations existing on all scales. Because in this case for each cell a path
can be defined, which leads through the cell and whose subsequent cells are in each case those,
whose relative density satisfies ≥ 1+ ϵ. These paths are finally again rational paths with infinite
absolute density. In other words, the relative densities as a function of scale must converge to 1
– at least in the bulk – for the absolute densities to be undoubtedly bounded.

In particular, incompatible with the density-based definition of infinite paths are continuous
density functions, since by definition they do not distinguish points of space sufficiently clearly
from other points of their neighborhood.

Separately, it is interesting to consider the consequences of an analogous constraint on Shannon
entropy. Such a constraint is due to −

∑
pi log(pi) =

∑
pi log(1/pi), with an upper bound c > 0,

identical to the condition 1/pi ≤ c, from which follows:

pi ≥ pabs,min :=
1

c

If one associates the probability pi, like the yi of the U-entropy, with the particle occupation
probability in cell Ci of size xi, then the condition means that above a certain scale the further
division of the cell Ci is not accompanied by a corresponding division of the probability pi. Thus,
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for a division of Ci into subcells Cij with relative sizes xij and particle shares pij , for exactly one
subcell Cik the particle share satisfies

pik = pi

and for all others j ̸= k:
pij = 0

If the division is infinitely continued, the condition defines exactly one infinite path A leading
through cell Ci that has particle share pi, while all other infinite paths through Ci have particle
shares 0. A is then the address of a mass point of classical mechanics.

7.6.4 Boundedness by infinitesimals

Boundedness with bipartition

We now assume the existence of a procedure of choice according to section 7.5.2, which is the basis
for the density-based definition and distinguishability of infinite paths. Under this assumption,
according to inequality 7.37, the largest relative density is bounded below by a value 1+ ϵ, from
which in turn follows, according to section 7.5.3, the exponential growth of the absolute densities
of rational paths and hence the infinity of these densities, even when ϵ has the meaning of an
infinitesimal. The premises of the last section are thus certainly violated. On the other hand,
the rational paths have such a small share among all paths that they need not necessarily stand
in the way of the finiteness of entropy.

However, it will be shown below that the U-entropy for a non-infinitesimal ϵ grows linearly as a
function of scale in the same way as the Shannon entropy and thus infinitely, which corresponds
to a logarithmic growth as a function of the partition size, i.e., the number of cells on the
scales. In this context it can be mentioned, because thus both entropies have in principle this
growth equally, that the logarithmic growth is of extraordinary slowness, as it is illustrated by
the following graph of the logarithm function:

Figure 7.2: Der Graph des Logarithmus x 7→ log(x) zur Illustration seines geringen Wachstums

It is true that the graph is deceptive in that it is plotted against the background of a deliberately
small scale. On the other hand, however, it is exactly what determines an essential part of the
discussion about entropy, namely taking the limit to even infinitely small scales. As will be
proved in the second volume on the continuum, the growth of the logarithm is even so slow that
the sequence

log(1), log(2), log(3), · · · log(n), · · ·

on the one hand grows infinitely though, since there is no upper bound or at least it cannot be
named, but on the other hand the sequence does not traverse the set of natural numbers N, so
that

lim
n→∞

log(n) < lim
n→∞

n
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is true. Therefore, the conjecture can be made that logarithmic growth has the fundamental
potential for finiteness as well as infinity. For Shannon entropy, the section 3.3.3 has revealed the
side of infinite growth even when the non-uniform distributions that keep Shannon entropy small
are perfect except for an infinitesimal. The reverse is true for U-entropy, since it becomes small
as the uniform distribution increases. The ambiguity of logarithmic growth is now seen in the
fact that U-entropy is bounded when the density is almost perfectly, i.e., uniformly distributed
except for an infinitesimal, which allows the infinite paths – through the infinitesimal – to be
distinguishable.

For the upper bound estimation now of the entropy growth, we assume in this section, analogously
to section 3.3.3 on the infinite growth of Shannon entropy and as already occurred in section
3.5.3 to investigate the intensivity of density entropy, a simple binary partitioning hierarchy in
which, at each scale, each cell Ci is decomposed into exactly two subcells with the same relative
sizes xi1 = xi2 = 1/2. Let the particle shares of the two cells be yi1 = 1/2− ξ and yi2 = 1/2+ ξ,
respectively, so that ξ is a measure of the size of the non-uniform distribution of particles – here
over the two halves – as in Shannon entropy. For ξ = 0 they are uniformly distributed between
the halves, for ξ = 1/2 and ξ = −1/2 they are entirely either in one or the other half.

For the entropy Ui associated with the bipartition of the cell Ci, which we now call ∆Ui because
of the accentuation of the increase, according to Eqn. 7.21

∆Ui = xi1ρi1 log(ρi1) + xi2ρi2 log(ρi2) (7.41)

holds and for the relative densities ρi1 and ρi2:

ρi1 =
1/2− ξ
1/2

= 1− 2ξ, ρi2 =
1/2 + ξ

1/2
= 1 + 2ξ (7.42)

So also applies:

∆Ui =
1

2
[(1− 2ξ) log(1− 2ξ) + (1 + 2ξ) log(1 + 2ξ)] (7.43)

It is worthwhile to compare this expression to that in Eqn. 3.21 for the increase in Shannon
entropy

∆Si = log(2)− 1

2
((1− 2ξ) log(1− 2ξ) + (1 + 2ξ) log(1 + 2ξ))

because it becomes clear that the U-entropy literally turns the characteristics of the Shannon
entropy upside down, as is also shown in the following figure with the graphs for both functions,
∆Ui and ∆Si:

Figure 7.3: ∆Ui (yellow) and ∆Si (green) for the bipartition as a function of the non-uniform
distribution measure ξ.
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Both entropies require values close to 0 for their global boundedness, i.e., it must be ∆Ui ≈ 0
or ∆Si ≈ 0. The most important difference between them is that for ∆Ui this is the case for
uniform distribution in the neighborhood of ξ = 0 with derivative 0 and for ∆Si it is the case for
non-uniform distribution in the neighborhoods of ξ = 1/2 and ξ = −1/2 with derivatives ±∞.

To perform the estimation, we note that of the densities of the two halves ρi2 is the larger and
hence the largest, so that, because we assume the existence of a procedure of choice, it is subject
to the condition 7.37. That is,

1 + 2ξ = ρi2 ≥ 1 + ϵ

wherefrom

ξ ≥ ϵ

2

follows. Putting this into Eqn. 7.43 above for ξ, then it follows further, analogously to Eqn.
3.23 (∆Si ≥ ∆Smin := −2ϵ log(ϵ)), from the strict monotonicity of the entropy increase ∆Ui for
ξ > 0

∆Ui ≥ ∆Umin :=
1

2
[(1− ϵ) log(1− ϵ) + (1 + ϵ) log(1 + ϵ)] (7.44)

and from this according to Eqn. 7.19 for the entropy increase ∆UD(1, n) from one scale n− 1 to
the next n:

∆UD(1, n) =
∑
i

yi∆Ui ≥ ∆Umin (7.45)

For a finite lower bound ϵ > 0, together with Eqn. 7.20, this results in the same way as for the
Shannon entropy10 in the infinity of the U-entropy:

UD(1) =

∞∑
n=1

∆UD(1, n) ≥ lim
n→∞

∆Umin · n = ∆Umin lim
n→∞

n =∞ (7.46)

However, the difference in entropies as a function of the non-uniform distribution measure ξ
according to figure 7.3 gives a clear indication that the estimate for ∆Ui by the minimum entropy
∆Umin based on an infinitesimal ϵ may be different. The direct graphical comparison of the
minimum entropies ∆Umin and ∆Smin = −2ϵ log(ϵ) is even more evident:

10Cf. the relation 3.25
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Figure 7.4: Minimal ∆Umin (yellow) and ∆Smin (green) for the bipartition

The comparison of the minimum entropies is clearer because the critical point with entropy 0,
namely ϵ = 0, is the same for both entropies. Otherwise, however, their behavior at this point
is virtually opposite. Besides the differences already noted for the figure 7.3 – infinite derivative
for ∆Smin at ϵ = 0 in contrast to vanishing derivative for ∆Umin – it becomes clear that ∆Umin

is also defined for ϵ < 0.

For the estimation now based on an infinitesimal11 one can evolve ∆Umin above in second order
around ϵ = 0 and obtain:

∆Umin =
1

2
ϵ2 +O(ϵ3)

Replacing ϵ by an infinitesimal ϵ = ϵ1, ϵ2, ϵ3 · · · one finally obtains instead of 7.46, if one chooses
for the infinitesimal ϵ the sequence with members ϵn = C/

√
n for which C is a constant:

UD(1) =
∞∑
n=1

∆UD(1, n) ≥ lim
n→∞

∆Umin · n = lim
n→∞

n ·
(
1

2
ϵ2n +O(ϵ3n)

)
=

1

2
C (7.47)

Thus it is shown that the U-entropy does not necessarily grow infinitely, if the relative density
also varies on the infinite scales with at least infinitesimal size. A necessary condition for the
boundedness and thus the convergence of the entropy is thus fulfilled. Now, in the same way, one
can define plausible conditions whose fulfillment also implies the existence of an upper bound for
the entropy. For example, the assumption that the fluctuations of the relative densities are not
only globally bounded downward by an infinitesimal, but in any case below an arbitrarily small
scale also bounded upward.

Boundedness in the general case

To consider the general case, instead of the expression for the entropy increase ∆Ui in Eqn. 7.41
we choose the expression given by Eqn. 7.25

∆Ui =
∑
j

xij(ρij log(ρij)− (ρij − 1))

which is determined by the non-negative entropy function

f : x 7→ x log(x)− (x− 1)

11Cf. the definition in 3.27
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and which is shown in Figure 7.1. Assuming, as suggested in the conclusion of the previous
section, that the relative density fluctuations on small scales are small and thus the densities ρij
are even in a tight ϵ environment of 1, so that

|ρij − 1| < ϵ

applies, then one can evolve the function f around 1 again and obtain

f(1 + x) =
1

2
x2 +O(x3)

and thus, because of the monotonicity of f on both sides of 1:

∆Ui <
1

2
ϵ2 +O(ϵ3)

From here one can follow the reasoning of the last section on the basis of an infinitesimal and
finally obtain the required estimate of the entropies UD(1, n) and thus the finiteness of the
entropy UD(1).

7.6.5 Density and entropy for rational and irrational paths

Individual and collective entropy

According to Eqn. 7.31, the collective entropy UD(1, n) of all finite paths of scale n equals:

UD(1, n) =
∑

An∈Sn

x(An)U−(An) =
∑

An∈Sn

x(An)U+(An)

It is then an average of the individual entropies U−(An) or U+(An). Equivalently, it is the
mean of the local entropies in the cells of the flat partitioning defined by the n-th scale of the
partitioning hierarchy. Both are also true in the limit n → ∞. The individual entropies of the
finite paths become those of the rational and irrational paths, and the divisible cells of finite
size > 0 of the finite scales become the indivisible rational and irrational points of space whose
addresses are the infinite paths. Because rational and irrational paths are by definition uniquely
distinguishable, the entropy of an individual rational path can also be separated from that of an
irrational path, and similarly the collective entropy of all rational paths can be separated from
that of irrational paths.

An individual infinite path A = C0, C1, C2, · · · can be assigned an entropy alternatively according
to the equations 7.28 or 7.29 so that – with the relative densities ρ1, ρ2, ρ3, · · · and the absolute
densities ϱn = ρ1ρ2 · · · ρn along the path – for the entropies U−(A) or U+(A) holds:

U−(A) = lim
n→∞

ϱn log(ϱn) (7.48)

U+(A) = lim
n→∞

ϱn log(ϱn)− (ϱn − 1) (7.49)

Rational paths

For a single rational path, the entropy is infinite according to the two definitions 7.48 and 7.49,
since the absolute density ϱn according to Eqn. 7.39 f. grows infinitely.

Notwithstanding this, the collective contribution of all rational paths to the total entropy is zero.
To this end, we first establish that (for rational paths)

U+(A) < U−(A)
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applies, so that an upward estimate of the collective entropy based on the individual values U−(A)
is sufficient. To perform the estimation, we again assume a binary partitioning hierarchy with
cell bipartition and further note that – taking into account the 7.5.5 section on the cardinality
of rational and irrational paths – the number of rational paths counted with respect to a scale
n grows ∼ 2n, but falls ∼ 2−n relative to the growing number of irrational paths. The resulting
small share of rational paths relative to that of irrational paths is responsible for the fact that
their collective entropy share in the total entropy is also small, despite the unbounded growth of
their absolute densities.

For the relative densities ρn, because of the assumed cell bipartition, according to the equations
7.42 holds:

0 ≤ ρn ≤ 2

If one assumes that there is a q with 1 < q < 2 and a scale N such that for all relative densities
ρn at all scales n > N even

ρn ≤ q

is valid, then it follows for U−(An) of a partial path An = C0, C1, C2, · · ·Cn of A with n > N :

U−(An) = ρ1ρ2ρ3 · · · ρn log(ρ1ρ2ρ3 · · · ρn) ≤ 2Nqn−N log(2n) = 2Nqn−Nn log(2)

Let then Xn be the share of the counted rational paths in all counted paths on the scale n, for
which Xn ≤ 2−n holds according to what was said at the beginning. Then, because of q/2 < 1,
the entropy share of the rational paths is bounded above by:

lim
n→∞

Xn2
Nqn−Nn log(2) ≤ lim

n→∞

(q
2

)n−N
n log(2) = 0

Irrational paths

The section 7.6.3 about the boundedness of entropy by the boundedness of absolute density shows
how much the boundedness of U-entropy is connected with that of absolute density. This is true
not only for the collective, but in the same way for the entropy of a single infinite path, because
it is directly functionally related to the density. I.e. the entropy of the path is bounded exactly
if it is the absolute densities ϱ1, ϱ2, · · · along itself. Downward, the restriction holds anyway –
first for the absolute densities, which by definition are ≥ 0, but also for the entropies, which is
directly illustrated by figure 7.1. Now for an irrational path, the bounded growth of its absolute
densities cannot be guaranteed, to be sure. However, one can assume that the probability of
infinite growth for an arbitrarily chosen path is zero, because for it, by definition according to
section 7.5.4, the probability for each of its cells C1, C2, C3, · · · has the same size for each possible
relative density, e.g., for densities < 1 on the one hand and those > 1 on the other. Therefore,
also its probability of infinite density growth

lim
n→∞

ρ1ρ2ρ3 · · · ρn =∞

and likewise its convergence to 0

lim
n→∞

ρ1ρ2ρ3 · · · ρn = 0

equals zero. However, it does not necessarily follow that they converge. Rather, the logarithmized
absolute density

∞∑
n=1

log(ρn)
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of a path represents a series which is almost always bounded, but just not necessarily convergent,
even if the logarithmized relative densities log(ρn) form a zero sequence, because this is only a
necessary, but not a sufficient condition for the convergence of the series, because in general the
series, similar to an alternatung series12, consists of positive and negative summands at the same
time.

Now according to the conditions of section 7.6.4 the boundedness and convergence of the total
entropy is certain and thus necessarily also that of the collective entropy of the irrational paths,
since that of the rational paths is equal to zero. Of course, this convergence is also connected
with the boundedness of the absolute densities of almost all irrational paths, which has just been
justified by the probability argument, and which can also be justified in the following simple but
quite different way:

Namely, this boundedness is a consequence of the density normalization∑
i

xiϱi =
∑
i

xi
yi
xi

= 1

Because of this, the upward growth of the density can only be compensated by falling but
bounded values because of its global lower bound 0. To see this more clearly, let the index i
again mark the cells of the flat partitioning defined by a scale n of a partitioning hierarchy. Let
then X(n) be the cumulative volume of those cells of the scale whose absolute density ρi has at
least a given value ϱ(n) such that holds:

ϱi ≥ ϱ(n)

Because of normalization is

1 ≥
∑

i:ϱi≥ϱ(n)

xiϱi ≥
∑

i:ϱi≥ϱ(n)

xiϱ(n) = X(n)ϱ(n)

and thus:

X(n) ≤ 1

ϱ(n)

So if the sequence of values ϱ(n) satisfies

lim
n→∞

ϱ(n) =∞

then the volume of the affected cells in the limit of infinite resolution is

lim
n→∞

X(n) = lim
n→∞

1

ϱ(n)
= 0 (7.50)

so that the set of paths with an infinitely increasing absolute density is a null set, insofar as one
connects the size of the uncountable set of paths leading through a cell with the size of the cell,
i.e., its measure.

Thus, conversely, the set of paths with bounded absolute density has measure 1. Since the
rational paths do not belong to it in any case because of their infinite density and their share
is also a null set anyway, the boundedness concerns therefore the irrational paths and of them
almost all.

12https://en.wikipedia.org/wiki/Alternating_series

https://en.wikipedia.org/wiki/Alternating_series
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7.6.6 Entropy as its own convergence criterion

The past sections have made clear the connection between the boundedness of densities and
that of entropy, and thus the connection between density and convergence of entropy. This
involved necessary or sufficient conditions for the boundedness of entropy in terms of lower or
upper bounds 1+ ϵ for the relative density, whether ϵ has the meaning of an infinitesimal or not.
Now, setting bounds, in this case for densities to satisfy without exception, is a hard convergence
criterion. Density entropy, however, does not need such a hard criterion, as shown first of all
by the rational paths which do not obey the density constraint and yet do not jeopardize the
convergence of entropy. According to Eqn. 7.19, the entropy increase on the n-th scale is equal
to:

∆UD(1, n) =
∑
ij

yiyij log(ρij)

The logarithmization log(ρij) maps the ratios of densities ρij relative to 1 to values relative to
0, and their mean is ∆UD(1, n). At very small scales in the limit n→∞, the index i represents
an uncountable set which admits any number – certainly in any case countably infinite – of
exceptions to the constraint on the densities, without any influence on the mean. It follows that
entropy itself – as a mean value in the form of the above equation – is the actual and considerably
finer13 convergence criterion for the boundedness, and hence the convergence of itself, than the
strict boundedness of densities could ever be.

However, in this a decisive role is played additionally by the increasingly equal clustering of
densities ρij on both sides of zero as the scale decreases, which, if they are close to 1, are
clustered not only in equal numbers but also with equal magnitudes on both sides of 0 because
of the then valid relation log(ρij) ≈ ρij − 1, which gives the infinitesimal its meaning.

Finally, with respect to this symmetry around zero, the essential difference to Shannon entropy
is shown here in a particularly striking way. For its analogue to the above equation is given by
Eqn. 3.17:

∆S(n) =
∑
ij

pipij log

(
1

pij

)

Unlike the density ρij , however, 1/pij > 1 is always true and thus also without exception:

log

(
1

pij

)
> 0

13Cf. the end of section 3.3.4
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